Multi-Layer Hierarchical Federated Learning with Quantization
- URL: http://arxiv.org/abs/2505.08145v1
- Date: Tue, 13 May 2025 00:47:13 GMT
- Title: Multi-Layer Hierarchical Federated Learning with Quantization
- Authors: Seyed Mohammad Azimi-Abarghouyi, Carlo Fischione,
- Abstract summary: We propose a Multi-Layer Hierarchical Federated Learning framework (QMLHFL)<n> QMLHFL generalizes hierarchical FL to arbitrary numbers of layers and network architectures through nested aggregation.<n>Our results show that QMLHFL consistently achieves high learning accuracy, even under high data heterogeneity.
- Score: 12.31724446119113
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Almost all existing hierarchical federated learning (FL) models are limited to two aggregation layers, restricting scalability and flexibility in complex, large-scale networks. In this work, we propose a Multi-Layer Hierarchical Federated Learning framework (QMLHFL), which appears to be the first study that generalizes hierarchical FL to arbitrary numbers of layers and network architectures through nested aggregation, while employing a layer-specific quantization scheme to meet communication constraints. We develop a comprehensive convergence analysis for QMLHFL and derive a general convergence condition and rate that reveal the effects of key factors, including quantization parameters, hierarchical architecture, and intra-layer iteration counts. Furthermore, we determine the optimal number of intra-layer iterations to maximize the convergence rate while meeting a deadline constraint that accounts for both communication and computation times. Our results show that QMLHFL consistently achieves high learning accuracy, even under high data heterogeneity, and delivers notably improved performance when optimized, compared to using randomly selected values.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - Layer-wise Quantization for Quantized Optimistic Dual Averaging [75.4148236967503]
We develop a general layer-wise quantization framework with tight variance and code-length bounds, adapting to the heterogeneities over the course of training.<n>We propose a novel Quantized Optimistic Dual Averaging (QODA) algorithm with adaptive learning rates, which achieves competitive convergence rates for monotone VIs.
arXiv Detail & Related papers (2025-05-20T13:53:58Z) - Sequential Federated Learning in Hierarchical Architecture on Non-IID Datasets [25.010661914466354]
In a real federated learning (FL) system, communication overhead for passing model parameters between the clients and the parameter (PS) is often a bottleneck.
We propose sequential FL (SFL) HFL for the first time, which removes the central PS and enables the model to be completed only through passing data between two adjacent ESs for each server.
arXiv Detail & Related papers (2024-08-19T07:43:35Z) - A Hierarchical Federated Learning Approach for the Internet of Things [3.28418927821443]
We present a novel federated learning solution, QHetFed, suitable for large-scale Internet of Things deployments.<n>We show that QHetFed consistently achieves high learning accuracy and significantly outperforms other hierarchical algorithms.
arXiv Detail & Related papers (2024-03-03T15:40:24Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Federated Learning over Hierarchical Wireless Networks: Training Latency Minimization via Submodel Partitioning [15.311309249848739]
Hierarchical independent submodel training (HIST) is a new FL methodology that aims to address these issues in hierarchical cloud-edge-client networks.<n>We demonstrate how HIST can be augmented with over-the-air computation (AirComp) to further enhance the efficiency of the model aggregation over the edge cells.
arXiv Detail & Related papers (2023-10-27T04:42:59Z) - Efficient and Effective Deep Multi-view Subspace Clustering [9.6753782215283]
We propose a novel deep framework, termed Efficient and Effective deep Multi-View Subspace Clustering (E$2$MVSC)
Instead of a parameterized FC layer, we design a Relation-Metric Net that decouples network parameter scale from sample numbers for greater computational efficiency.
E$2$MVSC yields comparable results to existing methods and achieves state-of-the-art performance in various types of multi-view datasets.
arXiv Detail & Related papers (2023-10-15T03:08:25Z) - Learning Hierarchical Features with Joint Latent Space Energy-Based
Prior [44.4434704520236]
We study the fundamental problem of multi-layer generator models in learning hierarchical representations.
We propose a joint latent space EBM prior model with multi-layer latent variables for effective hierarchical representation learning.
arXiv Detail & Related papers (2023-10-14T15:44:14Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - WLD-Reg: A Data-dependent Within-layer Diversity Regularizer [98.78384185493624]
Neural networks are composed of multiple layers arranged in a hierarchical structure jointly trained with a gradient-based optimization.
We propose to complement this traditional 'between-layer' feedback with additional 'within-layer' feedback to encourage the diversity of the activations within the same layer.
We present an extensive empirical study confirming that the proposed approach enhances the performance of several state-of-the-art neural network models in multiple tasks.
arXiv Detail & Related papers (2023-01-03T20:57:22Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
Communication of gradients is costly for training deep neural networks with multiple devices in computer vision applications.
In this work, we deduce the optimal condition of both the binary and multi-level gradient quantization for textbfANY gradient distribution.
Based on the optimal condition, we develop two novel quantization schemes: biased BinGrad and unbiased ORQ for binary and multi-level gradient quantization respectively.
arXiv Detail & Related papers (2020-02-25T18:28:39Z) - FPCR-Net: Feature Pyramidal Correlation and Residual Reconstruction for
Optical Flow Estimation [72.41370576242116]
We propose a semi-supervised Feature Pyramidal Correlation and Residual Reconstruction Network (FPCR-Net) for optical flow estimation from frame pairs.
It consists of two main modules: pyramid correlation mapping and residual reconstruction.
Experiment results show that the proposed scheme achieves the state-of-the-art performance, with improvement by 0.80, 1.15 and 0.10 in terms of average end-point error (AEE) against competing baseline methods.
arXiv Detail & Related papers (2020-01-17T07:13:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.