論文の概要: A Multi-scale Representation Learning Framework for Long-Term Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2505.08199v1
- Date: Tue, 13 May 2025 03:26:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.409742
- Title: A Multi-scale Representation Learning Framework for Long-Term Time Series Forecasting
- Title(参考訳): 時系列予測のためのマルチスケール表現学習フレームワーク
- Authors: Boshi Gao, Qingjian Ni, Fanbo Ju, Yu Chen, Ziqi Zhao,
- Abstract要約: 長期時系列予測(LTSF)は、エネルギー消費や天気予報といった実用的な設定において幅広い用途を提供する。
この研究は、多粒度情報の最適部分利用を含むLTSFの重要な問題に直面している。
提案手法は,様々なスケールにわたる明瞭で同時的な予測を用いて,複雑な時間的ダイナミクスを適切に解き放つ。
- 参考スコア(独自算出の注目度): 6.344911113059126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term time series forecasting (LTSF) offers broad utility in practical settings like energy consumption and weather prediction. Accurately predicting long-term changes, however, is demanding due to the intricate temporal patterns and inherent multi-scale variations within time series. This work confronts key issues in LTSF, including the suboptimal use of multi-granularity information, the neglect of channel-specific attributes, and the unique nature of trend and seasonal components, by introducing a proficient MLP-based forecasting framework. Our method adeptly disentangles complex temporal dynamics using clear, concurrent predictions across various scales. These multi-scale forecasts are then skillfully integrated through a system that dynamically assigns importance to information from different granularities, sensitive to individual channel characteristics. To manage the specific features of temporal patterns, a two-pronged structure is utilized to model trend and seasonal elements independently. Experimental results on eight LTSF benchmarks demonstrate that MDMixer improves average MAE performance by 4.64% compared to the recent state-of-the-art MLP-based method (TimeMixer), while achieving an effective balance between training efficiency and model interpretability.
- Abstract(参考訳): 長期時系列予測(LTSF)は、エネルギー消費や天気予報といった実用的な設定において幅広い用途を提供する。
しかし、時系列内の複雑な時間パターンと固有のマルチスケール変動のために、正確な長期的変化の予測が求められている。
この研究は、多粒度情報の最適利用、チャネル固有の属性の無視、トレンドや季節的要素の独特な性質といったLTSFの課題に、熟練したMLPベースの予測フレームワークを導入することで直面している。
提案手法は,様々なスケールにわたる明瞭で同時的な予測を用いて,複雑な時間的ダイナミクスを適切に解き放つ。
これらのマルチスケール予測は、個々のチャネル特性に敏感な異なる粒度の情報に動的に重要度を割り当てるシステムを通じて、巧みに統合される。
時間的パターンの特定の特徴を管理するために、傾向と季節的要素を独立にモデル化するために2つの長方形構造を用いる。
8 LTSF ベンチマーク実験の結果,MDMixer は最近の最先端 MLP 法 (TimeMixer) と比較して平均 MAE 性能を4.64%向上し,トレーニング効率とモデル解釈可能性のバランスが取れた。
関連論文リスト
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - xLSTM-Mixer: Multivariate Time Series Forecasting by Mixing via Scalar Memories [20.773694998061707]
時系列データは様々な分野に分散しており、堅牢で正確な予測モデルの開発が必要である。
我々は,時間的シーケンス,共同時間可変情報,堅牢な予測のための複数の視点を効果的に統合するモデルであるxLSTM-Mixerを紹介する。
我々は,最近の最先端手法と比較して,xLSTM-Mixerの長期予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2024-10-22T11:59:36Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
本稿では,新しい時系列予測フレームワークであるUmambaTSFを提案する。
U字型エンコーダ・デコーダ多層パーセプトロン(MLP)のマルチスケール特徴抽出機能とMambaのロングシーケンス表現を統合する。
UmambaTSFは、広く使用されているベンチマークデータセットで最先端のパフォーマンスと優れた汎用性を達成する。
論文 参考訳(メタデータ) (2024-10-15T04:56:43Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting [19.88184356154215]
時系列予測は、交通計画や天気予報などのアプリケーションで広く使われている。
TimeMixerは、長期および短期の予測タスクにおいて、一貫した最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-05-23T14:27:07Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
時系列予測(LTSF)は時系列分析において重要なフロンティアである。
本研究は, 分析的および実証的な証拠から, 分解が過剰なモデルインフレーションを包含する鍵であることを実証する。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れている。
論文 参考訳(メタデータ) (2024-01-22T13:15:40Z) - HiMTM: Hierarchical Multi-Scale Masked Time Series Modeling with Self-Distillation for Long-Term Forecasting [17.70984737213973]
HiMTMは長期予測のための自己蒸留を用いた階層型マルチスケールマスク時系列モデリングである。
HiMTMは,(1)階層型マルチスケールトランスフォーマー (HMT) と,2) エンコーダを特徴抽出へ向ける分離エンコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダ(DED)デコンダデコーダデコンダデコーダデコーダデコーダデコンダデコーダ(DED) の4つのキーコンポーネントを統合する。
7つの主流データセットの実験によると、HiMTMは最先端の自己教師とエンドツーエンドの学習手法を3.16-68.54%上回っている。
論文 参考訳(メタデータ) (2024-01-10T09:00:03Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
本稿では、Channel Dependent(CD)戦略でトレーニングされたモデルが、Channel Dependent(CD)戦略でトレーニングされたモデルよりも優れていることを示す。
以上の結果から,CD手法は高いキャパシティを持つが,分散ドリフト時系列を正確に予測する堅牢性に欠けることがわかった。
本稿では,CI戦略を超越した正規化(PRReg)による予測残差法(Predict Residuals with Regularization, PRReg)を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:15:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。