論文の概要: Continuous World Coverage Path Planning for Fixed-Wing UAVs using Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2505.08382v1
- Date: Tue, 13 May 2025 09:29:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.504398
- Title: Continuous World Coverage Path Planning for Fixed-Wing UAVs using Deep Reinforcement Learning
- Title(参考訳): 深部強化学習を用いた固定翼UAVの連続世界被覆経路計画
- Authors: Mirco Theile, Andres R. Zapata Rodriguez, Marco Caccamo, Alberto L. Sangiovanni-Vincentelli,
- Abstract要約: 無人航空機 (UAV) カバー・パス・プランニング (CPP) は、精密農業や捜索救助などの応用において重要である。
連続環境におけるUAV CPP問題を定式化し、完全カバレッジを確保しつつ消費電力を最小化する。
提案手法は, 曲率制約付きB'ezier曲線を用いた可変サイズ軸整形矩形とUAV運動を用いて環境をモデル化する。
- 参考スコア(独自算出の注目度): 4.851013539976943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Vehicle (UAV) Coverage Path Planning (CPP) is critical for applications such as precision agriculture and search and rescue. While traditional methods rely on discrete grid-based representations, real-world UAV operations require power-efficient continuous motion planning. We formulate the UAV CPP problem in a continuous environment, minimizing power consumption while ensuring complete coverage. Our approach models the environment with variable-size axis-aligned rectangles and UAV motion with curvature-constrained B\'ezier curves. We train a reinforcement learning agent using an action-mapping-based Soft Actor-Critic (AM-SAC) algorithm employing a self-adaptive curriculum. Experiments on both procedurally generated and hand-crafted scenarios demonstrate the effectiveness of our method in learning energy-efficient coverage strategies.
- Abstract(参考訳): 無人航空機 (UAV) カバー・パス・プランニング (CPP) は、精密農業や捜索救助などの応用において重要である。
従来の手法はグリッドベースの離散表現に依存しているが、現実のUAV操作は電力効率のよい連続的な動作計画を必要とする。
連続環境におけるUAV CPP問題を定式化し、完全カバレッジを確保しつつ消費電力を最小化する。
提案手法は, 曲率制約付きB'ezier曲線を用いた可変サイズ軸整形矩形とUAV運動を用いて環境をモデル化する。
我々は,自己適応型カリキュラムを用いて,アクションマッピングに基づくソフトアクター・クリティカル(AM-SAC)アルゴリズムを用いて強化学習エージェントを訓練する。
手続き的に生成されたシナリオと手作りシナリオの両方の実験は、エネルギー効率の高いカバレッジ戦略の学習における本手法の有効性を実証している。
関連論文リスト
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Meta Reinforcement Learning for Strategic IoT Deployments Coverage in
Disaster-Response UAV Swarms [5.57865728456594]
無人航空機(UAV)は、重要な緊急用途に使用される可能性があるとして、学術や産業の研究者の注目を集めている。
これらのアプリケーションには、地上のユーザーに無線サービスを提供し、災害の影響を受けた地域からデータを収集する機能が含まれる。
UAVの限られた資源、エネルギー予算、厳格なミッション完了時間は、これらの用途にUAVを採用する際の課題を提起している。
論文 参考訳(メタデータ) (2024-01-20T05:05:39Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
本稿では,郊外環境におけるセルラー接続型無人航空機(UAV)の干渉対応共同経路計画と電力配分機構について検討する。
UAVは、そのアップリンクスループットを最大化し、近隣のBSに接続された地上ユーザ機器(UE)への干渉のレベルを最小化することを目的としている。
Q-learning と深層強化学習 (DRL) を併用した逆強化学習 (IRL) による見習い学習手法
論文 参考訳(メタデータ) (2023-06-15T20:50:05Z) - Obstacle Avoidance for UAS in Continuous Action Space Using Deep
Reinforcement Learning [9.891207216312937]
小型無人航空機の障害物回避は将来の都市空輸の安全に不可欠である。
本稿では, PPO(Proximal Policy Optimization)に基づく深層強化学習アルゴリズムを提案する。
その結果,提案モデルが正確かつ堅牢なガイダンスを提供し,99%以上の成功率で競合を解消できることが示唆された。
論文 参考訳(メタデータ) (2021-11-13T04:44:53Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Motion Planning by Reinforcement Learning for an Unmanned Aerial Vehicle
in Virtual Open Space with Static Obstacles [3.5356468463540214]
静的障害物のあるオープンスペースにおける無人航空機(UAV)の動作計画に強化学習を適用した。
強化学習が進むにつれて,モデルの平均報酬と目標率が向上した。
論文 参考訳(メタデータ) (2020-09-24T16:42:56Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
本研究では,Q-Learningとニューラル表現を組み合わせた深層強化学習を用いて不安定性を回避する。
当社の方法論では,Q-Learningを深く使用して,アジャイル方法論のローリングウェーブプランニングアプローチと組み合わせています。
実験の結果,VVNの長距離ミッションの平均性能は55.31倍に向上した。
論文 参考訳(メタデータ) (2020-03-23T12:58:58Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。