論文の概要: Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation
- arxiv url: http://arxiv.org/abs/2505.08709v1
- Date: Tue, 13 May 2025 16:14:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.66899
- Title: Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation
- Title(参考訳): 不確実性を考慮したパラメータ推定のための対照的な正規化フロー
- Authors: Ibrahim Elsharkawy, Yonatan Kahn,
- Abstract要約: データから物理パラメータを推定することは、物理科学における機械学習(ML)の重要な応用である。
本稿では,HigsML Uncertainty Challengeデータセット上で最高のパフォーマンスを実現するContrastive Normalizing Flows(CNFs)に基づく新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating physical parameters from data is a crucial application of machine learning (ML) in the physical sciences. However, systematic uncertainties, such as detector miscalibration, induce data distribution distortions that can erode statistical precision. In both high-energy physics (HEP) and broader ML contexts, achieving uncertainty-aware parameter estimation under these domain shifts remains an open problem. In this work, we address this challenge of uncertainty-aware parameter estimation for a broad set of tasks critical for HEP. We introduce a novel approach based on Contrastive Normalizing Flows (CNFs), which achieves top performance on the HiggsML Uncertainty Challenge dataset. Building on the insight that a binary classifier can approximate the model parameter likelihood ratio, we address the practical limitations of expressivity and the high cost of simulating high-dimensional parameter grids by embedding data and parameters in a learned CNF mapping. This mapping yields a tunable contrastive distribution that enables robust classification under shifted data distributions. Through a combination of theoretical analysis and empirical evaluations, we demonstrate that CNFs, when coupled with a classifier and established frequentist techniques, provide principled parameter estimation and uncertainty quantification through classification that is robust to data distribution distortions.
- Abstract(参考訳): データから物理パラメータを推定することは、物理科学における機械学習(ML)の重要な応用である。
しかし、検出器の誤校正のような系統的な不確実性は、統計的精度を損なう可能性のあるデータ分散歪みを誘発する。
高エネルギー物理学(HEP)とより広いMLの文脈において、これらの領域シフトの下で不確実性を考慮したパラメータ推定を実現することは、未解決の問題である。
本研究では,HEPに不可欠なタスクの幅広いセットに対する不確実性を考慮したパラメータ推定という課題に対処する。
本稿では,HigsML Uncertainty Challengeデータセット上で最高のパフォーマンスを実現するContrastive Normalizing Flows(CNFs)に基づく新しいアプローチを提案する。
モデルパラメータ確率比を近似できる2値分類器の知見に基づいて,CNFマッピングにデータとパラメータを埋め込むことで,高次元パラメータグリッドをシミュレーションする,表現性の実用的限界と高コストに対処する。
このマッピングは、シフトしたデータ分布の下で堅牢な分類を可能にする、調整可能なコントラスト分布をもたらす。
理論解析と経験的評価の組み合わせにより, CNF が分類器と組み合わせ, 頻繁な手法を確立することにより, データ分散歪みに頑健な分類によるパラメータ推定と不確かさの定量化を行うことを示した。
関連論文リスト
- Partial Transportability for Domain Generalization [56.37032680901525]
本稿では, 部分的同定と輸送可能性の理論に基づいて, 対象分布の関数値の有界化に関する新たな結果を紹介する。
我々の貢献は、輸送可能性問題に対する最初の一般的な評価手法を提供することである。
本稿では,スケーラブルな推論を実現するための勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2025-03-30T22:06:37Z) - Extended Fiducial Inference: Toward an Automated Process of Statistical Inference [9.277340234795801]
拡張フィデューシャル推論(EFI)と呼ばれる新しい統計的推論法を開発した。
提案手法は,高度な統計計算技術を活用することにより,フィデューシャル推論の目標を達成する。
EFIはパラメータ推定と仮説テストにおいて大きなアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-07-31T14:15:42Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Optimal statistical inference in the presence of systematic
uncertainties using neural network optimization based on binned Poisson
likelihoods with nuisance parameters [0.0]
本研究は,特徴工学のためのニューラルネットワークによる次元削減を構築するための新しい戦略を提案する。
提案手法は, 最適に近い利害関係のパラメータを推定する方法について議論する。
論文 参考訳(メタデータ) (2020-03-16T13:27:18Z) - Orthogonal Statistical Learning [49.55515683387805]
人口リスクが未知のニュアンスパラメータに依存するような環境では,統計学習における非漸近的過剰リスク保証を提供する。
人口リスクがNeymanityと呼ばれる条件を満たす場合,メタアルゴリズムによって達成される過剰リスクに対するニュアンス推定誤差の影響は2次であることを示す。
論文 参考訳(メタデータ) (2019-01-25T02:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。