論文の概要: Statistical Decision Theory with Counterfactual Loss
- arxiv url: http://arxiv.org/abs/2505.08908v2
- Date: Sun, 19 Oct 2025 19:41:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:38.301299
- Title: Statistical Decision Theory with Counterfactual Loss
- Title(参考訳): 実測損失を考慮した統計的決定理論
- Authors: Benedikt Koch, Kosuke Imai,
- Abstract要約: 我々は、反実的損失を組み込むことで、古典的な統計的決定理論を一般化する。
強い無知性の仮定の下では、反ファクト的損失関数が加法的である場合に限り、反ファクト的リスクが特定可能であることを証明している。
追加的な反事実的損失は意思決定の精度と難しさを捉えることができる一方で、標準的損失は精度のみを考慮できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Many researchers have applied classical statistical decision theory to evaluate treatment choices and learn optimal policies. However, because this framework is based solely on realized outcomes under chosen decisions and ignores counterfactual outcomes, it cannot assess the quality of a decision relative to feasible alternatives. For example, in bail decisions, a judge must consider not only crime prevention but also the avoidance of unnecessary burdens on arrestees. To address this limitation, we generalize standard decision theory by incorporating counterfactual losses, allowing decisions to be evaluated using all potential outcomes. The central challenge in this counterfactual statistical decision framework is identification: since only one potential outcome is observed for each unit, the associated counterfactual risk is generally not identifiable. We prove that, under the assumption of strong ignorability, the counterfactual risk is identifiable if and only if the counterfactual loss function is additive in the potential outcomes. Moreover, we demonstrate that additive counterfactual losses can yield treatment recommendations, which differ from those based on standard loss functions when the decision problem involves more than two treatment options. One interpretation of this result is that additive counterfactual losses can capture the accuracy and difficulty of a decision, whereas standard losses account for accuracy alone. Finally, we formulate a symbolic linear inverse program that, given a counterfactual loss, determines whether its risk is identifiable, without requiring data.
- Abstract(参考訳): 多くの研究者は、治療の選択を評価し、最適なポリシーを学ぶために古典的な統計的決定理論を適用してきた。
しかし、この枠組みは、選択された決定の下で実現された結果のみに基づいており、反実的な結果を無視しているため、実行可能な代替案に対する決定の質を評価することはできない。
例えば、保釈決定においては、裁判官は犯罪防止だけでなく、逮捕者に対する不必要な負担の回避も考慮しなければならない。
この制限に対処するため、我々は反実的損失を組み込むことで、標準決定理論を一般化し、すべての潜在的な結果を用いて意思決定を評価することができる。
このカウンターファクト的統計的決定の枠組みにおける中心的な課題は識別である: ユニット毎に1つの潜在的な結果のみが観察されるため、関連するカウンターファクト的リスクは一般的には特定できない。
強い無知性の仮定の下では、反現実的損失関数が潜在的な結果に付加的である場合に限り、反現実的リスクが特定可能であることを証明している。
さらに,2つ以上の治療法が関係している場合の標準的損失関数とは異なる,付加的反事実的損失が治療勧告を導出できることを示す。
この結果の解釈の1つは、付加的な反事実的損失は決定の正確さと難しさを捉えることができるが、標準的な損失は精度のみを考慮に入れているということである。
最後に,そのリスクを識別できるかどうかを,データを必要とすることなく決定する線形逆プログラムを定式化する。
関連論文リスト
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
医療の安全性と有効性を理解するためには,観測データから因果量の推定が重要である。
医療従事者は、平均因果量の推定だけでなく、治療効果のランダム性をランダムな変数として理解する必要がある。
このランダム性はアレタリック不確実性と呼ばれ、治療効果の利益や量子化の確率を理解するために必要である。
論文 参考訳(メタデータ) (2024-11-05T18:14:49Z) - Auditing Fairness under Unobserved Confounding [56.61738581796362]
意外なことに、リスクの高い人に対する治療率の有意義な限界を計算できることが示されています。
現実の多くの環境では、リスクの偏りのない見積を導き出すために、アロケーションの前にデータを持っているという事実を使用します。
論文 参考訳(メタデータ) (2024-03-18T21:09:06Z) - Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding [2.8498944632323755]
選択的に観測されたデータにおける予測アルゴリズムの頑健な設計と評価のための統一的なフレームワークを提案する。
我々は、選択されていないユニットと選択されたユニットの間で、平均して結果がどの程度異なるかという一般的な仮定を課す。
我々は,大規模な予測性能推定値のクラスにおける境界値に対するバイアス付き機械学習推定器を開発する。
論文 参考訳(メタデータ) (2022-12-19T20:41:44Z) - Bounding Counterfactuals under Selection Bias [60.55840896782637]
本稿では,識別不能なクエリと識別不能なクエリの両方に対処するアルゴリズムを提案する。
選択バイアスによって引き起こされる欠如にもかかわらず、利用可能なデータの可能性は無限であることを示す。
論文 参考訳(メタデータ) (2022-07-26T10:33:10Z) - Policy Learning with Asymmetric Counterfactual Utilities [0.6138671548064356]
非対称対実効関数を用いた最適政策学習について検討する。
最大電力損失を最小にすることで、最小限の決定ルールを導出する。
中間分類問題を解くことにより、観測データから最小損失決定ルールを学習できることが示される。
論文 参考訳(メタデータ) (2022-06-21T15:44:49Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
条件平均治療効果(CATE)は、個々の因果効果の最適点予測である。
集約分析では、通常は分布処理効果(DTE)の測定によって対処される。
我々は,多種多様な問題に対して条件付きDTE(CDTE)を学習するための,新しい堅牢でモデルに依存しない手法を提供する。
論文 参考訳(メタデータ) (2022-05-23T17:40:31Z) - To Impute or not to Impute? -- Missing Data in Treatment Effect
Estimation [84.76186111434818]
我々は,MCM(Mixed Con founded missingness)と呼ばれる新しい欠損機構を同定し,ある欠損度が治療選択を判断し,他の欠損度が治療選択によって決定されることを示した。
本研究は,全てのデータを因果的に入力すると,不偏推定を行うために必要な情報を効果的に除去するので,処理効果のモデルが貧弱になることを示す。
私たちのソリューションは選択的計算であり、CMMからの洞察を使って、どの変数をインプットすべきで、どの変数をインプットすべきでないかを正確に知らせる。
論文 参考訳(メタデータ) (2022-02-04T12:08:31Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - Estimating Average Treatment Effects via Orthogonal Regularization [18.586616164230566]
従来の方法は根拠のない結果に基づいて成果を見積もるが、根拠のない結果に課されるいかなる制約も無視する。
非定常性を利用した平均治療効果を推定するための新しい正規化フレームワークを提案する。
我々はDONUTが最先端技術を大幅に上回っていることを実証する。
論文 参考訳(メタデータ) (2021-01-21T08:05:35Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Off-policy Policy Evaluation For Sequential Decisions Under Unobserved
Confounding [33.58862183373374]
観測不能条件下でのOPE手法のロバスト性を評価する。
また,OPE法に偏りが強い場合も少ないことが示唆された。
最悪ケース境界の計算に有効な損失最小化手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T05:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。