Lower Bounds on the MMSE of Adversarially Inferring Sensitive Features
- URL: http://arxiv.org/abs/2505.09004v1
- Date: Tue, 13 May 2025 22:39:24 GMT
- Title: Lower Bounds on the MMSE of Adversarially Inferring Sensitive Features
- Authors: Monica Welfert, Nathan Stromberg, Mario Diaz, Lalitha Sankar,
- Abstract summary: We propose an adversarial evaluation framework for sensitive feature inference based on a finite sample size and linear predictive models.<n>Our approach establishes theoretical lower bounds on the true MMSE of inferring sensitive features from noisy observations of other correlated features.
- Score: 4.8998185508205765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an adversarial evaluation framework for sensitive feature inference based on minimum mean-squared error (MMSE) estimation with a finite sample size and linear predictive models. Our approach establishes theoretical lower bounds on the true MMSE of inferring sensitive features from noisy observations of other correlated features. These bounds are expressed in terms of the empirical MMSE under a restricted hypothesis class and a non-negative error term. The error term captures both the estimation error due to finite number of samples and the approximation error from using a restricted hypothesis class. For linear predictive models, we derive closed-form bounds, which are order optimal in terms of the noise variance, on the approximation error for several classes of relationships between the sensitive and non-sensitive features, including linear mappings, binary symmetric channels, and class-conditional multi-variate Gaussian distributions. We also present a new lower bound that relies on the MSE computed on a hold-out validation dataset of the MMSE estimator learned on finite-samples and a restricted hypothesis class. Through empirical evaluation, we demonstrate that our framework serves as an effective tool for MMSE-based adversarial evaluation of sensitive feature inference that balances theoretical guarantees with practical efficiency.
Related papers
- On Minimax Estimation of Parameters in Softmax-Contaminated Mixture of Experts [66.39976432286905]
We study the convergence rates of the maximum likelihood estimator of gating and prompt parameters.<n>We find that the estimability of these parameters is compromised when the prompt acquires overlapping knowledge with the pre-trained model.
arXiv Detail & Related papers (2025-05-24T01:30:46Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Probability Distribution Learning and Its Application in Deep Learning [0.0]
This paper introduces a novel theoretical learning framework, termed probability distribution learning (PD learning)<n>PD learning focuses on learning the underlying probability distribution, which is modeled as a random variable within the probability simplex.
arXiv Detail & Related papers (2024-06-09T06:49:22Z) - Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference [9.940560505044122]
We propose a method to improve the efficiency and accuracy of amortized Bayesian inference.
We estimate the marginal likelihood based on approximate representations of the joint model.
arXiv Detail & Related papers (2023-10-06T17:41:41Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Keep it Tighter -- A Story on Analytical Mean Embeddings [0.6445605125467574]
Kernel techniques are among the most popular and flexible approaches in data science.
Mean embedding gives rise to a divergence measure referred to as maximum mean discrepancy (MMD)
In this paper we focus on the problem of MMD estimation when the mean embedding of one of the underlying distributions is available analytically.
arXiv Detail & Related papers (2021-10-15T21:29:27Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Minimum Excess Risk in Bayesian Learning [23.681494934015927]
We analyze the best achievable performance of Bayesian learning under generative models by defining and upper-bounding the minimum excess risk (MER)
The definition of MER provides a principled way to define different notions of uncertainties in Bayesian learning.
arXiv Detail & Related papers (2020-12-29T17:41:30Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Achieving Equalized Odds by Resampling Sensitive Attributes [13.114114427206678]
We present a flexible framework for learning predictive models that approximately satisfy the equalized odds notion of fairness.
This differentiable functional is used as a penalty driving the model parameters towards equalized odds.
We develop a formal hypothesis test to detect whether a prediction rule violates this property, the first such test in the literature.
arXiv Detail & Related papers (2020-06-08T00:18:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.