Automated Alert Classification and Triage (AACT): An Intelligent System for the Prioritisation of Cybersecurity Alerts
- URL: http://arxiv.org/abs/2505.09843v1
- Date: Wed, 14 May 2025 23:02:32 GMT
- Title: Automated Alert Classification and Triage (AACT): An Intelligent System for the Prioritisation of Cybersecurity Alerts
- Authors: Melissa Turcotte, François Labrèche, Serge-Olivier Paquette,
- Abstract summary: AACT learns from analysts' triage actions on cybersecurity alerts.<n>It accurately predicts triage decisions in real time.<n>This reduces the SOC queue allowing analysts to focus on the most severe, relevant or ambiguous threats.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Enterprise networks are growing ever larger with a rapidly expanding attack surface, increasing the volume of security alerts generated from security controls. Security Operations Centre (SOC) analysts triage these alerts to identify malicious activity, but they struggle with alert fatigue due to the overwhelming number of benign alerts. Organisations are turning to managed SOC providers, where the problem is amplified by context switching and limited visibility into business processes. A novel system, named AACT, is introduced that automates SOC workflows by learning from analysts' triage actions on cybersecurity alerts. It accurately predicts triage decisions in real time, allowing benign alerts to be closed automatically and critical ones prioritised. This reduces the SOC queue allowing analysts to focus on the most severe, relevant or ambiguous threats. The system has been trained and evaluated on both real SOC data and an open dataset, obtaining high performance in identifying malicious alerts from benign alerts. Additionally, the system has demonstrated high accuracy in a real SOC environment, reducing alerts shown to analysts by 61% over six months, with a low false negative rate of 1.36% over millions of alerts.
Related papers
- WebGuard: Building a Generalizable Guardrail for Web Agents [59.31116061613742]
WebGuard is the first dataset designed to support the assessment of web agent action risks.<n>It contains 4,939 human-annotated actions from 193 websites across 22 diverse domains.
arXiv Detail & Related papers (2025-07-18T18:06:27Z) - OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - SafeMobile: Chain-level Jailbreak Detection and Automated Evaluation for Multimodal Mobile Agents [58.21223208538351]
This work explores the security issues surrounding mobile multimodal agents.<n>It attempts to construct a risk discrimination mechanism by incorporating behavioral sequence information.<n>It also designs an automated assisted assessment scheme based on a large language model.
arXiv Detail & Related papers (2025-07-01T15:10:00Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
We propose a methodology leveraging Natural Language Processing (NLP) to associate Common Vulnerabilities and Exposure (CAPEC) vulnerabilities with Common Attack Patternion and Classification (CAPEC) attack patterns.<n> Experimental evaluations demonstrate superior performance compared to state-of-the-art models.
arXiv Detail & Related papers (2025-01-13T08:39:52Z) - Forecasting Attacker Actions using Alert-driven Attack Graphs [1.3812010983144802]
This paper builds an action forecasting capability on top of the alert-driven AG framework for predicting the next likely attacker action.
We also modify the framework to build AGs in real time, as new alerts are triggered.
This way, we convert alert-driven AGs into an early warning system that enables analysts circumvent ongoing attacks and break the cyber killchain.
arXiv Detail & Related papers (2024-08-19T11:04:47Z) - Carbon Filter: Real-time Alert Triage Using Large Scale Clustering and Fast Search [6.830322979559498]
"Alert fatigue" is one of the biggest challenges faced by the Security Operations Center (SOC) today.
We present Carbon Filter, a statistical learning based system that dramatically reduces the number of alerts analysts need to manually review.
arXiv Detail & Related papers (2024-05-07T22:06:24Z) - You Cannot Escape Me: Detecting Evasions of SIEM Rules in Enterprise Networks [2.310746340159112]
We present AMIDES, an open-source proof-of-concept adaptive misuse detection system.
We show that AMIDES successfully detects a majority of these evasions without any false alerts.
arXiv Detail & Related papers (2023-11-16T21:05:12Z) - That Escalated Quickly: An ML Framework for Alert Prioritization [2.5845893156827158]
We present That Escalated Quickly (TEQ), a machine learning framework that reduces alert fatigue with minimal changes to SOC.
On real-world data, the system is able to reduce the time it takes to respond to actionable incidents by $22.9%$, suppress $54%$ of false positives with a $95.1%$ detection rate, and reduce the number of alerts an analyst needs to investigate within singular incidents by $14%$.
arXiv Detail & Related papers (2023-02-13T19:20:52Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - SAGE: Intrusion Alert-driven Attack Graph Extractor [4.530678016396476]
Attack graphs (AGs) are used to assess pathways availed by cyber adversaries to penetrate a network.
We propose to automatically learn AGs based on actions observed through intrusion alerts, without prior expert knowledge.
arXiv Detail & Related papers (2021-07-06T17:45:02Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
arXiv Detail & Related papers (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.