LanTu: Dynamics-Enhanced Deep Learning for Eddy-Resolving Ocean Forecasting
- URL: http://arxiv.org/abs/2505.10191v1
- Date: Thu, 15 May 2025 11:47:54 GMT
- Title: LanTu: Dynamics-Enhanced Deep Learning for Eddy-Resolving Ocean Forecasting
- Authors: Qingyu Zheng, Qi Shao, Guijun Han, Wei Li, Hong Li, Xuan Wang,
- Abstract summary: We develop LanTu, a regional eddy-resolving ocean forecasting system based on dynamics-enhanced deep learning.<n>Results show that LanTu outperforms the existing advanced operational numerical ocean forecasting system (NOFS) and AI-based ocean forecasting system (AI-OFS) in temperature, salinity, sea level anomaly and current prediction.<n>Our study highlights that dynamics-enhanced deep learning (LanTu) can be a powerful paradigm for eddy-resolving ocean forecasting.
- Score: 7.849449854663816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mesoscale eddies dominate the spatiotemporal multiscale variability of the ocean, and their impact on the energy cascade of the global ocean cannot be ignored. Eddy-resolving ocean forecasting is providing more reliable protection for fisheries and navigational safety, but also presents significant scientific challenges and high computational costs for traditional numerical models. Artificial intelligence (AI)-based weather and ocean forecasting systems are becoming powerful tools that balance forecast performance with computational efficiency. However, the complex multiscale features in the ocean dynamical system make AI models still face many challenges in mesoscale eddy forecasting (especially regional modelling). Here, we develop LanTu, a regional eddy-resolving ocean forecasting system based on dynamics-enhanced deep learning. We incorporate cross-scale interactions into LanTu and construct multiscale physical constraint for optimising LanTu guided by knowledge of eddy dynamics in order to improve the forecasting skill of LanTu for mesoscale evolution. The results show that LanTu outperforms the existing advanced operational numerical ocean forecasting system (NOFS) and AI-based ocean forecasting system (AI-OFS) in temperature, salinity, sea level anomaly and current prediction, with a lead time of more than 10 days. Our study highlights that dynamics-enhanced deep learning (LanTu) can be a powerful paradigm for eddy-resolving ocean forecasting.
Related papers
- OKG-LLM: Aligning Ocean Knowledge Graph with Observation Data via LLMs for Global Sea Surface Temperature Prediction [70.48962924608033]
This work presents the first systematic effort to construct an Ocean Knowledge Graph (OKG) specifically designed to represent diverse ocean knowledge for SST prediction.<n>We develop a graph embedding network to learn the comprehensive semantic and structural knowledge within the OKG, capturing both the unique characteristics of individual sea regions and the complex correlations between them. Finally, we align the learned knowledge with fine-grained numerical SST data and leverage a pre-trained LLM to model SST patterns for accurate prediction.
arXiv Detail & Related papers (2025-07-31T02:06:03Z) - Deep Learning Weather Models for Subregional Ocean Forecasting: A Case Study on the Canary Current Upwelling System [0.0]
This work aims to adapt a graph neural network initially developed for global weather forecasting to improve subregional ocean prediction.<n>The model is trained with satellite data and compared to state-of-the-art physical ocean models to assess its performance in capturing ocean dynamics.<n>Our results show that the deep learning model surpasses traditional methods in precision despite some challenges in upwelling areas.
arXiv Detail & Related papers (2025-05-30T10:10:40Z) - Advanced long-term earth system forecasting by learning the small-scale nature [74.19833913539053]
We present Triton, an AI framework designed to address this fundamental challenge.<n>Inspired by increasing grids to explicitly resolve small scales in numerical models, Triton employs a hierarchical architecture processing information across multiple resolutions to mitigate spectral bias.<n>We demonstrate Triton's superior performance on challenging forecast tasks, achieving stable year-long global temperature forecasts, skillful Kuroshio eddy predictions till 120 days, and high-fidelity turbulence simulations.
arXiv Detail & Related papers (2025-05-26T02:49:00Z) - LangYa: Revolutionizing Cross-Spatiotemporal Ocean Forecasting [17.125674052741928]
We introduce LangYa, a cross-spatiotemporal and air-sea coupled ocean forecasting system.<n>Results demonstrate that LangYa enables a single model to make forecasts with lead times ranging from 1 to 7 days.<n>Compared to existing numerical and AI-based ocean forecasting systems, LangYa uses 27 years of global ocean data from the Global Ocean Reanalysis and Simulation version 12.
arXiv Detail & Related papers (2024-12-24T02:14:39Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Regional Ocean Forecasting with Hierarchical Graph Neural Networks [1.4146420810689422]
We introduce SeaCast, a neural network designed for high-resolution, medium-range ocean forecasting.
SeaCast employs a graph-based framework to handle the complex geometry of ocean grids and integrates external forcing data tailored to the regional ocean context.
Our approach is validated through experiments at a high spatial resolution using the operational numerical model of the Mediterranean Sea provided by the Copernicus Marine Service.
arXiv Detail & Related papers (2024-10-15T17:34:50Z) - Data-driven Global Ocean Modeling for Seasonal to Decadal Prediction [39.7461632644892]
ORCA-DL is the first data-driven 3D ocean model for seasonal to decadal prediction of global ocean circulation.
It accurately simulates three-dimensional ocean dynamics and outperforms state-of-the-art dynamical models.
It stably emulates ocean dynamics at decadal timescales, demonstrating its potential even for skillful decadal predictions and climate projections.
arXiv Detail & Related papers (2024-05-24T10:23:17Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
This study introduces OceanNet, a principled neural operator-based digital twin for ocean circulation.
OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream)
arXiv Detail & Related papers (2023-10-01T23:06:17Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.