Deep Learning Weather Models for Subregional Ocean Forecasting: A Case Study on the Canary Current Upwelling System
- URL: http://arxiv.org/abs/2505.24429v2
- Date: Fri, 06 Jun 2025 10:05:06 GMT
- Title: Deep Learning Weather Models for Subregional Ocean Forecasting: A Case Study on the Canary Current Upwelling System
- Authors: Giovanny A. Cuervo-Londoño, Javier Sánchez, Ángel Rodríguez-Santana,
- Abstract summary: This work aims to adapt a graph neural network initially developed for global weather forecasting to improve subregional ocean prediction.<n>The model is trained with satellite data and compared to state-of-the-art physical ocean models to assess its performance in capturing ocean dynamics.<n>Our results show that the deep learning model surpasses traditional methods in precision despite some challenges in upwelling areas.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Oceanographic forecasting impacts various sectors of society by supporting environmental conservation and economic activities. Based on global circulation models, traditional forecasting methods are computationally expensive and slow, limiting their ability to provide rapid forecasts. Recent advances in deep learning offer faster and more accurate predictions, although these data-driven models are often trained with global data from numerical simulations, which may not reflect reality. The emergence of such models presents great potential for improving ocean prediction at a subregional domain. However, their ability to predict fine-scale ocean processes, like mesoscale structures, remains largely unknown. This work aims to adapt a graph neural network initially developed for global weather forecasting to improve subregional ocean prediction, specifically focusing on the Canary Current upwelling system. The model is trained with satellite data and compared to state-of-the-art physical ocean models to assess its performance in capturing ocean dynamics. Our results show that the deep learning model surpasses traditional methods in precision despite some challenges in upwelling areas. It demonstrated superior performance in reducing RMSE errors compared to ConvLSTM and the GLORYS reanalysis, particularly in regions with complex oceanic dynamics such as Cape Ghir, Cape Bojador, and Cape Blanc. The model achieved improvements of up to 26.5% relative to ConvLSTM and error reductions of up to 76% in 5-day forecasts compared to the GLORYS reanalysis at these critical locations, highlighting its enhanced capability to capture spatial variability and improve predictive accuracy in complex areas. These findings suggest the viability of adapting meteorological data-driven models for improving subregional medium-term ocean forecasting.
Related papers
- OKG-LLM: Aligning Ocean Knowledge Graph with Observation Data via LLMs for Global Sea Surface Temperature Prediction [70.48962924608033]
This work presents the first systematic effort to construct an Ocean Knowledge Graph (OKG) specifically designed to represent diverse ocean knowledge for SST prediction.<n>We develop a graph embedding network to learn the comprehensive semantic and structural knowledge within the OKG, capturing both the unique characteristics of individual sea regions and the complex correlations between them. Finally, we align the learned knowledge with fine-grained numerical SST data and leverage a pre-trained LLM to model SST patterns for accurate prediction.
arXiv Detail & Related papers (2025-07-31T02:06:03Z) - FuXi-Ocean: A Global Ocean Forecasting System with Sub-Daily Resolution [10.627782397713856]
FuXi-Ocean is the first data-driven global ocean forecasting model achieving six-hourly predictions at eddy-resolving 1/12deg spatial resolution.<n>The model architecture integrates a context-aware feature extraction module with a predictive network employing stacked attention blocks.<n>FuXi-Ocean demonstrates superior skill in predicting key variables, including temperature, salinity, and currents, across multiple depths.
arXiv Detail & Related papers (2025-06-03T00:52:31Z) - Advancing Marine Heatwave Forecasts: An Integrated Deep Learning Approach [3.8713566366330325]
Extreme climate phenomenon heatwaves (MHWs) pose significant challenges to marine ecosystems and industries.<n>This study introduces an integrated deep learning approach to forecast short-to-long-term MHWs on a global scale.
arXiv Detail & Related papers (2024-11-19T06:11:52Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
This study introduces OceanNet, a principled neural operator-based digital twin for ocean circulation.
OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream)
arXiv Detail & Related papers (2023-10-01T23:06:17Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Intelligent model for offshore China sea fog forecasting [0.7503129292751938]
This study aims to develop an advanced sea fog forecasting method embedded in a numerical weather prediction model.
We employ a time-lagged correlation analysis technique to identify key predictors and decipher the underlying mechanisms driving sea fog occurrence.
To verify the accuracy of our method, we evaluate its performance using a comprehensive dataset spanning one year.
arXiv Detail & Related papers (2023-07-20T04:46:34Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
We train a conditional Generative Adversarial Network -- coined CorrectorGAN -- to produce ensembles of high-resolution, bias-corrected forecasts.
CorrectorGAN, once trained, produces predictions in seconds on a single machine.
Results raise exciting questions about the necessity of regional models, and whether data-driven downscaling and correction methods can be transferred to data-poor regions.
arXiv Detail & Related papers (2022-03-23T09:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.