A Hybrid Strategy for Aggregated Probabilistic Forecasting and Energy Trading in HEFTCom2024
- URL: http://arxiv.org/abs/2505.10367v1
- Date: Thu, 15 May 2025 14:55:11 GMT
- Title: A Hybrid Strategy for Aggregated Probabilistic Forecasting and Energy Trading in HEFTCom2024
- Authors: Chuanqing Pu, Feilong Fan, Nengling Tai, Songyuan Liu, Jinming Yu,
- Abstract summary: This paper presents the solution of team GEB, which ranked 3rd in trading, 4th in forecasting, and 1st among student teams in the IEEE Hybrid Energy Forecasting and Trading Competition 2024 (HEFTCom2024)<n>The solution provides accurate probabilistic forecasts for a wind-solar hybrid system, and achieves substantial trading revenue in the day-ahead electricity market.
- Score: 0.11650821883155187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining accurate probabilistic energy forecasts and making effective decisions amid diverse uncertainties are routine challenges in future energy systems. This paper presents the solution of team GEB, which ranked 3rd in trading, 4th in forecasting, and 1st among student teams in the IEEE Hybrid Energy Forecasting and Trading Competition 2024 (HEFTCom2024). The solution provides accurate probabilistic forecasts for a wind-solar hybrid system, and achieves substantial trading revenue in the day-ahead electricity market. Key components include: (1) a stacking-based approach combining sister forecasts from various Numerical Weather Predictions (NWPs) to provide wind power forecasts, (2) an online solar post-processing model to address the distribution shift in the online test set caused by increased solar capacity, (3) a probabilistic aggregation method for accurate quantile forecasts of hybrid generation, and (4) a stochastic trading strategy to maximize expected trading revenue considering uncertainties in electricity prices. This paper also explores the potential of end-to-end learning to further enhance the trading revenue by adjusting the distribution of forecast errors. Detailed case studies are provided to validate the effectiveness of these proposed methods. Code for all mentioned methods is available for reproduction and further research in both industry and academia.
Related papers
- Uncertainty-Aware Knowledge Transformers for Peer-to-Peer Energy Trading with Multi-Agent Reinforcement Learning [1.2289361708127877]
This paper presents a novel framework for Peer-to-Peer (P2P) energy trading that integrates uncertainty-aware prediction with multi-agent reinforcement learning (MARL)<n>The proposed approach employs a heteroscedastic probabilistic transformer-based prediction model called Knowledge Transformer with Uncertainty (KTU) to explicitly quantify prediction uncertainty.<n> Experimental results show that the uncertainty-aware Deep Q-Network (DQN) reduces energy purchase costs by up to 5.7% without P2P trading and 3.2% with P2P trading, while increasing electricity sales revenue by 6.4% and 44.7%, respectively.
arXiv Detail & Related papers (2025-07-22T17:46:28Z) - Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.<n>This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.<n>We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGE is a hybrid forecasting system that combines human and machine generated forecasts.<n>The system aggregates human and machine forecasts weighting both for propinquity and based on assessed skill.<n>We show that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data.
arXiv Detail & Related papers (2024-12-14T22:09:45Z) - Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression [0.0]
We examine three postprocessing methods for converting point forecasts of day-ahead electricity prices into probabilistic ones.
We find that while the latter demonstrates the most varied behavior, it contributes the most to the ensemble of the predictive distributions.
Remarkably, the performance of the combination is superior to that of state-of-the-art Distributional Deep Neural Networks over two 4.5-year test periods from the German and Spanish power markets.
arXiv Detail & Related papers (2024-04-02T19:50:36Z) - Conformal Prediction for Stochastic Decision-Making of PV Power in Electricity Markets [0.0]
conformal prediction (CP) is an emerging probabilistic forecasting method for day-ahead photovoltaic power predictions.
Using CP in combination with certain bidding strategies can yield high profit with minimal energy imbalance.
In concrete, using conformal predictive systems with k-nearest neighbors and Mondrian binning after random forest regression yields the best profit.
arXiv Detail & Related papers (2024-03-29T12:34:57Z) - Probabilistic Forecasting of Real-Time Electricity Market Signals via Interpretable Generative AI [41.99446024585741]
We present WIAE-GPF, a Weak Innovation AutoEncoder-based Generative Probabilistic Forecasting architecture.
A novel learning algorithm with structural convergence guarantees is proposed, ensuring that the generated forecast samples match the ground truth conditional probability distribution.
arXiv Detail & Related papers (2024-03-09T00:41:30Z) - Generative Probabilistic Time Series Forecasting and Applications in
Grid Operations [47.19756484695248]
Generative probabilistic forecasting produces future time series samples according to the conditional probability distribution given past time series observations.
We propose a weak innovation autoencoder architecture and a learning algorithm to extract independent and identically distributed innovation sequences.
We show that the weak innovation sequence is Bayesian sufficient, which makes the proposed weak innovation autoencoder a canonical architecture for generative probabilistic forecasting.
arXiv Detail & Related papers (2024-02-21T15:23:21Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - A two-step machine learning approach to statistical post-processing of
weather forecasts for power generation [0.0]
Wind and solar energy sources are highly volatile making planning difficult for grid operators.
We propose a two-step machine learning-based approach to calibrating ensemble weather forecasts.
arXiv Detail & Related papers (2022-07-15T16:38:14Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
We investigate the impact of eleven offline and five online learning algorithms to predict the electricity demand profile over the next 24h.
We show we can reduce the mean absolute error by 30% using an online algorithm when compared to the best offline algorithm.
We also show that large errors in prediction accuracy have a disproportionate error on investments made over a 17-year time frame.
arXiv Detail & Related papers (2021-03-07T11:28:54Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.