Magnon Nesting in Driven Two-Dimensional Quantum Magnets
- URL: http://arxiv.org/abs/2505.10531v2
- Date: Mon, 23 Jun 2025 12:35:19 GMT
- Title: Magnon Nesting in Driven Two-Dimensional Quantum Magnets
- Authors: Hossein Hosseinabadi, Yaroslav Tserkovnyak, Eugene Demler, Jamir Marino,
- Abstract summary: We find a new class of dynamical quantum instability in driven magnets.<n>This instability leads to emergent enhancement of antiferromagnetic correlations even for purely ferromagnetic microscopic couplings.<n>In sharp contrast to the fermionic case, however, the magnon-driven instability is intrinsically non-equilibrium and fundamentally inaccessible in thermal physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We uncover a new class of dynamical quantum instability in driven magnets leading to emergent enhancement of antiferromagnetic correlations even for purely ferromagnetic microscopic couplings. A primary parametric amplification creates a frequency-tuned nested magnon distribution in momentum space, which seeds a secondary instability marked by the emergence of enhanced antiferromagnetic correlations, mirroring the instability of nested Fermi surfaces in electronic systems. In sharp contrast to the fermionic case, however, the magnon-driven instability is intrinsically non-equilibrium and fundamentally inaccessible in thermal physics. Its quantum mechanical origin sets it apart from classical instabilities such as Faraday and modulation instabilities, which underlie several instances of dynamical behavior observed in magnetic and cold-atom systems.
Related papers
- Fourth-order quantum master equations reveal that spin-phonon decoherence undercuts long magnetization relaxation times in single-molecule magnets [55.2480439325792]
We numerically implement fourth-order quantum master equations to account for coherence terms and describe the full effect of up to two-phonon processes on spin dynamics.<n>We show that while strong axial magnetic anisotropy ensures slow magnetic relaxation approaching seconds at 77 K, the superposition of Kramers doublets is coherent for less than 10 ns due to a novel two-phonon pure dephasing mechanism.
arXiv Detail & Related papers (2025-07-28T11:13:33Z) - Observation of Magnetic Devil's Staircase-Like Behavior in Quasiperiodic Qubit Lattices [55.2480439325792]
devil's staircase (DS) phenomenon is a fractal response of magnetization to external fields.<n>We uncover a wealth of abrupt magnetic transitions driven by increasing external magnetic fields within a simple yet effective Ising-model framework.<n>Our results challenge the prevailing view that DS behavior is limited to periodic systems.
arXiv Detail & Related papers (2025-07-24T21:39:06Z) - Controllable and Continuous Quantum Phase Transitions in Intrinsic Magnetic Topological Insulator [50.54133633499971]
We study the intrinsic magnetic topological material MnBi2Te4 in which the heavy n-type doping features are strongly suppressed.<n>Based on angle-resolved photoemission spectroscopy, transport measurements, and first-principles calculations, we reveal two magnetism-induced TPTs.<n>Our work paves the way for the realization of intrinsic magnetic topological states in MnBi2Te4 family and provides an ideal platform for achieving controllable and continuous TPTs.
arXiv Detail & Related papers (2025-03-08T03:46:54Z) - Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies [44.1973928137492]
We show that chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits.<n>Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - External Control over Magnon-Magnon Coupling in a Two-Dimensional Array of Square Shaped Nanomagnets [0.0]
This study delves into the tunable magnon-magnon coupling within a two-dimensional array of Ni80Fe20 square nanomagnets.
The ability to modulate coupling strengths in this system highlights its potential for developing flexible and adaptive magnonic devices.
arXiv Detail & Related papers (2024-11-11T10:33:50Z) - Néel Spin-Orbit Torque in Antiferromagnetic Quantum Spin and Anomalous Hall Insulators [8.361642692363516]
topological phases support a staggered Edelstein effect through which an applied electric field can generate opposite non-equilibrium spins on the two AFM sublattices.
Our findings unravel an incredible way to exploit AFM topological phases to achieve ultrafast magnetic dynamics.
arXiv Detail & Related papers (2024-10-29T05:36:56Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [33.83310724797305]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.<n>We demonstrate their robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.<n>Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Cavity magnonics with easy-axis ferromagnet: Critically enhanced magnon
squeezing and light-matter interaction [0.6642919568083928]
We propose a cavity magnonics setup with an easy-axis ferromagnet to address this challenge.
We first establish a mechanism for the generation of magnon squeezing in the easy-axis ferromagnet.
A magnonic superradiant phase transition can be observed in our setup by tuning the static magnetic field.
arXiv Detail & Related papers (2023-05-14T10:39:39Z) - Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond
Quantum Magnetometry [42.60602838972598]
Whirling topological textures play a key role in exotic phases of magnetic materials and offer promise for logic and memory applications.
In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to ferromagnetic counterparts.
One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry.
arXiv Detail & Related papers (2023-03-21T18:30:20Z) - Designer Magnetism in High Entropy Oxides [41.74498230885008]
Disorder can have a dominating influence on correlated and quantum materials.
In magnetic systems, spin and exchange disorder can provide access to quantum criticality, frustration, and spin dynamics.
We show that high entropy oxides present an unexplored route to designing quantum materials.
arXiv Detail & Related papers (2021-04-12T15:21:48Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with
Perpendicular Anisotropy [0.0]
Nitrogen vacancy (NV) centers are applied to emerging quantum sensing, imaging, and network efforts.
We report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization.
arXiv Detail & Related papers (2020-09-07T04:24:44Z) - Energy and momentum conservation in spin transfer [77.34726150561087]
We show that energy and linear momentum conservation laws impose strong constraints on the properties of magnetic excitations induced by spin transfer.
Our results suggest the possibility to achieve precise control of spin transfer-driven magnetization dynamics.
arXiv Detail & Related papers (2020-04-04T15:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.