Generative diffusion for perceptron problems: statistical physics analysis and efficient algorithms
- URL: http://arxiv.org/abs/2502.16292v2
- Date: Mon, 26 May 2025 15:14:58 GMT
- Title: Generative diffusion for perceptron problems: statistical physics analysis and efficient algorithms
- Authors: Elizaveta Demyanenko, Davide Straziota, Carlo Baldassi, Carlo Lucibello,
- Abstract summary: We consider random instances of non- numerically weights perceptron problems in the high-dimensional limit.<n>We develop a formalism based on replica theory to predict Approximate sampling space using generative algorithms.
- Score: 2.860608352191896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider random instances of non-convex perceptron problems in the high-dimensional limit of a large number of examples $M$ and weights $N$, with finite load $\alpha = M/N$. We develop a formalism based on replica theory to predict the fundamental limits of efficiently sampling the solution space using generative diffusion algorithms, conjectured to be saturated when the score function is provided by Approximate Message Passing. For the spherical perceptron with negative margin $\kappa$, we find that the uniform distribution over solutions can be efficiently sampled in most of the Replica Symmetric region of the $\alpha-\kappa$ plane. In contrast, for binary weights, sampling from the uniform distribution remains intractable. A theoretical analysis of this obstruction leads us to identify a potential $U(s) = -\log(s)$, under which the corresponding tilted distribution becomes efficiently samplable via diffusion. Moreover, we show numerically that an annealing procedure over the shape of this potential yields a fast and robust Markov Chain Monte Carlo algorithm for sampling the solution space of the binary perceptron.
Related papers
- From Denoising Score Matching to Langevin Sampling: A Fine-Grained Error Analysis in the Gaussian Setting [25.21429354164613]
We analyze the sampling process in a simple yet representative setting using a Langevin diffusion sampler.
We show that the Wasserstein sampling error can be expressed as a kernel-type norm of the data power spectrum.
arXiv Detail & Related papers (2025-03-14T17:35:00Z) - Information-Theoretic Proofs for Diffusion Sampling [13.095978794717007]
This paper provides an elementary, self-contained analysis of diffusion-based sampling methods for generative modeling.<n>We show that, if the diffusion step sizes are chosen sufficiently small, then the sampling distribution is provably close to the target distribution.<n>Our results also provide a transparent view on how to accelerate convergence by introducing additional randomness in each step to match higher order moments in the comparison process.
arXiv Detail & Related papers (2025-02-04T13:19:21Z) - Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.<n>Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.<n>Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Solving High-dimensional Inverse Problems Using Amortized Likelihood-free Inference with Noisy and Incomplete Data [43.43717668587333]
We present a likelihood-free probabilistic inversion method based on normalizing flows for high-dimensional inverse problems.<n>The proposed method is composed of two complementary networks: a summary network for data compression and an inference network for parameter estimation.<n>We apply the proposed method to an inversion problem in groundwater hydrology to estimate the posterior distribution of the log-conductivity field conditioned on spatially sparse time-series observations.
arXiv Detail & Related papers (2024-12-05T19:13:17Z) - Efficiently learning and sampling multimodal distributions with data-based initialization [20.575122468674536]
We consider the problem of sampling a multimodal distribution with a Markov chain given a small number of samples from the stationary measure.
We show that if the Markov chain has a $k$th order spectral gap, samples from the stationary distribution will efficiently generate a sample whose conditional law is $varepsilon$-close in TV distance to the stationary measure.
arXiv Detail & Related papers (2024-11-14T01:37:02Z) - Harmonic Path Integral Diffusion [0.4527270266697462]
We present a novel approach for sampling from a continuous multivariate probability distribution, which may either be explicitly known (up to a normalization factor) or represented via empirical samples.
Our method constructs a time-dependent bridge from a delta function centered at the origin of the state space at $t=0$, transforming it into the target distribution at $t=1$.
We contrast these algorithms with other sampling methods, particularly simulated and path integral sampling, highlighting their advantages in terms of analytical control, accuracy, and computational efficiency.
arXiv Detail & Related papers (2024-09-23T16:20:21Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
We propose a variational inference approach to sample from the posterior distribution for solving inverse problems.
We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - Provable Benefit of Annealed Langevin Monte Carlo for Non-log-concave Sampling [28.931489333515618]
We establish an oracle complexity of $widetildeOleft(fracdbeta2cal A2varepsilon6right)$ for the simple annealed Langevin Monte Carlo algorithm.<n>We show that $cal A$ represents the action of a curve of probability measures interpolating the target distribution $pi$ and a readily sampleable distribution.
arXiv Detail & Related papers (2024-07-24T02:15:48Z) - Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
Proximal samplers (SPS) for sampling from non-log-concave distributions are studied.
We show that the convergence to the target distribution can be guaranteed as long as the algorithm trajectory is bounded.
We provide two implementable variants based on Langevin dynamics (SGLD) and Langevin-MALA, giving rise to SPS-SGLD and SPS-MALA.
arXiv Detail & Related papers (2024-05-27T00:53:18Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
We present the first framework to solve linear inverse problems leveraging pre-trained latent diffusion models.
We theoretically analyze our algorithm showing provable sample recovery in a linear model setting.
arXiv Detail & Related papers (2023-07-02T17:21:30Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
arXiv Detail & Related papers (2023-03-06T18:59:19Z) - Inverse Models for Estimating the Initial Condition of Spatio-Temporal
Advection-Diffusion Processes [5.814371485767541]
Inverse problems involve making inference about unknown parameters of a physical process using observational data.
This paper investigates the estimation of the initial condition of a-temporal advection-diffusion process using spatially sparse data streams.
arXiv Detail & Related papers (2023-02-08T15:30:16Z) - Optimal Scaling for Locally Balanced Proposals in Discrete Spaces [65.14092237705476]
We show that efficiency of Metropolis-Hastings (M-H) algorithms in discrete spaces can be characterized by an acceptance rate that is independent of the target distribution.
Knowledge of the optimal acceptance rate allows one to automatically tune the neighborhood size of a proposal distribution in a discrete space, directly analogous to step-size control in continuous spaces.
arXiv Detail & Related papers (2022-09-16T22:09:53Z) - SNIPS: Solving Noisy Inverse Problems Stochastically [25.567566997688044]
We introduce a novel algorithm dubbed SNIPS, which draws samples from the posterior distribution of any linear inverse problem.
Our solution incorporates ideas from Langevin dynamics and Newton's method, and exploits a pre-trained minimum mean squared error (MMSE)
We show that the samples produced are sharp, detailed and consistent with the given measurements, and their diversity exposes the inherent uncertainty in the inverse problem being solved.
arXiv Detail & Related papers (2021-05-31T13:33:21Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.