論文の概要: Predicting Human Behavior in Autonomous Systems: A Collaborative Machine Teaching Approach for Reducing Transfer of Control Events
- arxiv url: http://arxiv.org/abs/2505.10695v1
- Date: Thu, 15 May 2025 20:34:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:13.565738
- Title: Predicting Human Behavior in Autonomous Systems: A Collaborative Machine Teaching Approach for Reducing Transfer of Control Events
- Title(参考訳): 自律システムにおける人間の行動予測:制御事象の伝達を減らすための協調型機械指導アプローチ
- Authors: Julian Wolter, Amr Gomaa,
- Abstract要約: Transfer of Control (ToC)は、障害時に自動化プロセスを中断するための従来のアプローチである。
本稿では,人間のインタラクションデータを用いて,問題の事前特定と対処が可能なAIモデルを訓練するデータ駆動手法を提案する。
その結果,非専門家からのデータでさえ,不要なToCイベントを減らすために効果的にモデルをトレーニングできることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As autonomous systems become integral to various industries, effective strategies for fault handling are essential to ensure reliability and efficiency. Transfer of Control (ToC), a traditional approach for interrupting automated processes during faults, is often triggered unnecessarily in non-critical situations. To address this, we propose a data-driven method that uses human interaction data to train AI models capable of preemptively identifying and addressing issues or assisting users in resolution. Using an interactive tool simulating an industrial vacuum cleaner, we collected data and developed an LSTM-based model to predict user behavior. Our findings reveal that even data from non-experts can effectively train models to reduce unnecessary ToC events, enhancing the system's robustness. This approach highlights the potential of AI to learn directly from human problem-solving behaviors, complementing sensor data to improve industrial automation and human-AI collaboration.
- Abstract(参考訳): 自律システムが様々な産業に不可欠なものとなるにつれて、信頼性と効率を確保するために障害処理の効果的な戦略が不可欠である。
障害時に自動化プロセスを中断する従来のアプローチであるTransfer of Control (ToC) は、必要のない非クリティカルな状況でトリガーされることが多い。
そこで本研究では,人間のインタラクションデータを用いて,問題を特定し,対処したり,ユーザの解決を支援するAIモデルを訓練するデータ駆動手法を提案する。
産業用掃除機を模擬した対話型ツールを用いてデータを収集し,ユーザ行動を予測するLSTMモデルを開発した。
その結果,非専門家のデータでさえ,不要なToCイベントを効果的にトレーニングし,システムの堅牢性を高めることができることがわかった。
このアプローチは、AIが人間の問題解決行動から直接学習し、センサーデータを補完して産業の自動化と人間とAIのコラボレーションを改善する可能性を強調している。
関連論文リスト
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
ロボット工学における継続的な学習は、変化する環境やタスクに常に適応できるシステムを求める。
本稿では,オンラインロボット力学モデルアライメントのためのフローマッチングを利用した生成フレームワークを提案する。
ロボットは,不整合モデルで探索するのではなく,行動自体を変換することで,より効率的に情報収集を行う。
論文 参考訳(メタデータ) (2025-04-25T16:26:15Z) - AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence [65.29835430845893]
本稿では,AI-in-the-loopジョイントセンシングと通信によるエッジインテリジェンス向上のためのフレームワークを提案する。
私たちの研究の重要な貢献は、バリデーション損失とシステムのチューニング可能なパラメータとの間に明確な関係を確立することです。
提案手法は, 通信エネルギー消費を最大77%削減し, 試料数で測定した検知コストを最大52%削減する。
論文 参考訳(メタデータ) (2025-02-14T14:56:58Z) - Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments [0.0]
本稿では,データ品質モニタリングプロセスを自動化するために,人間によるループ強化学習を適用するための概念実証を提案する。
人間の分類におけるランダムな非バイアスノイズが低減され,ベースラインの精度が向上することを示す。
論文 参考訳(メタデータ) (2024-05-24T12:52:46Z) - The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains [3.79770624632814]
本稿では,モデル予測制御,ディープラーニング,センサネットワークの概念を組み合わせた人工ニューラルツインを提案する。
我々のアプローチでは、分散プロセスのステップの状態を推定するために、微分可能なデータ融合を導入します。
相互接続されたプロセスステップを準ニューラルネットワークとして扱うことで、プロセス最適化やモデル微調整のための損失勾配をプロセスパラメータにバックプロパゲートすることができる。
論文 参考訳(メタデータ) (2024-03-27T08:34:39Z) - Effective Communication with Dynamic Feature Compression [25.150266946722]
本研究では,タスクを制御するロボットに対して,観察者が知覚データを伝達しなければならないプロトタイパルシステムについて検討する。
本稿では, 量子化レベルを動的に適応させるために, アンサンブルベクトル量子化変分オートエンコーダ(VQ-VAE)を符号化し, 深層強化学習(DRL)エージェントを訓練する。
我々は、よく知られたCartPole参照制御問題に対して提案手法を検証し、大幅な性能向上を得た。
論文 参考訳(メタデータ) (2024-01-29T15:35:05Z) - Data-efficient, Explainable and Safe Box Manipulation: Illustrating the Advantages of Physical Priors in Model-Predictive Control [0.0]
MPCフレームワークにおける環境力学の事前知識が,説明可能性,安全性,データ効率の向上につながることを示す。
我々は,実際のロボットシステムに基づくペイロード操作問題をモデル化し,MPCフレームワークにおける環境のダイナミクスに関する事前知識を活用することにより,説明可能性,安全性,データ効率の向上につながることを示す。
論文 参考訳(メタデータ) (2023-03-02T20:28:19Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression [23.36744348465991]
ロボットの群れの調整と産業システムのリモート無線制御は、5Gおよびそれ以上のシステムの主要なユースケースである。
本研究では,タスクを制御するアクターに知覚データを伝達しなければならないプロトタイパルシステムについて考察する。
本稿では,量子化レベルを動的に適応させるために,アンサンブルベクトル量子化変分オートエンコーダ(VQ-VAE)を符号化し,深層強化学習(DRL)エージェントを訓練する。
論文 参考訳(メタデータ) (2023-01-14T11:43:56Z) - On a Uniform Causality Model for Industrial Automation [61.303828551910634]
産業自動化の様々な応用分野に対する一様因果モデルを提案する。
得られたモデルは、サイバー物理システムの振る舞いを数学的に記述する。
このモデルは、機械学習に焦点を当てた産業自動化における新しいアプローチの応用の基盤として機能することが示されている。
論文 参考訳(メタデータ) (2022-09-20T11:23:51Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
強化学習(RL)アルゴリズムは、ロボットシステムの自律的なスキル獲得を可能にするという約束を持っている。
現実のロボットRLは、通常、環境をリセットするためにデータ収集と頻繁な人間の介入を必要とする。
本研究では,従来のタスクから収集した多様なオフラインデータセットを効果的に活用することで,これらの課題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2022-07-11T08:31:22Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
感性分析のための新しいテクスチブリド自動識別システム(AD)を導入する。
これにより、ニューラルネットワークをプライベートデータ上でトレーニングするなど、任意の微分可能な関数合成の感度をモデル化できる。
当社のアプローチは,データ処理の設定において,プライバシ損失に関する原則的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-09T07:19:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。