論文の概要: Humans expect rationality and cooperation from LLM opponents in strategic games
- arxiv url: http://arxiv.org/abs/2505.11011v1
- Date: Fri, 16 May 2025 09:01:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:14.381413
- Title: Humans expect rationality and cooperation from LLM opponents in strategic games
- Title(参考訳): 人間は戦略ゲームにおけるLLM相手の合理性と協力を期待する
- Authors: Darija Barak, Miguel Costa-Gomes,
- Abstract要約: 本研究は,人間の行動の差異に着目した最初の金銭的インセンティブを持つ実験室実験の結果である。
この環境下では,LLMと対戦する被験者は人間よりも有意に少ない数を選択する。
この変化は、主に戦略的推論能力の高い被験者によって引き起こされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) integrate into our social and economic interactions, we need to deepen our understanding of how humans respond to LLMs opponents in strategic settings. We present the results of the first controlled monetarily-incentivised laboratory experiment looking at differences in human behaviour in a multi-player p-beauty contest against other humans and LLMs. We use a within-subject design in order to compare behaviour at the individual level. We show that, in this environment, human subjects choose significantly lower numbers when playing against LLMs than humans, which is mainly driven by the increased prevalence of `zero' Nash-equilibrium choices. This shift is mainly driven by subjects with high strategic reasoning ability. Subjects who play the zero Nash-equilibrium choice motivate their strategy by appealing to perceived LLM's reasoning ability and, unexpectedly, propensity towards cooperation. Our findings provide foundational insights into the multi-player human-LLM interaction in simultaneous choice games, uncover heterogeneities in both subjects' behaviour and beliefs about LLM's play when playing against them, and suggest important implications for mechanism design in mixed human-LLM systems.
- Abstract(参考訳): 大規模言語モデル(LLM)が私たちの社会的・経済的相互作用に統合されるにつれ、戦略的な環境でのLLMの反対者に対する人間の反応の理解を深める必要があります。
本研究は、他の人間やLSMに対するマルチプレイヤーp美容コンテストにおいて、人間の行動の相違を考察した初めての金融インセンティブ実験の結果である。
個々のレベルでの振る舞いを比較するために、オブジェクト内設計を使用します。
この環境下では,「ゼロ」ナッシュ均衡の選択が増加し,LLMと対戦する被験者が人間よりも有意に少ない数を選択することが示される。
この変化は、主に戦略的推論能力の高い被験者によって引き起こされる。
ゼロナッシュ均衡選択を行う被験者は、LLMの推論能力に訴え、予期せぬ協力に対する正当性を訴えることで、彼らの戦略を動機付けている。
本研究は、同時選択ゲームにおけるマルチプレイヤーの人間-LLM相互作用に関する基礎的な知見を提供し、対戦時のLDMの遊びに関する不均一性と信念を明らかにするとともに、混合人-LLMシステムにおけるメカニズム設計に重要な意味を示唆する。
関連論文リスト
- Who is a Better Player: LLM against LLM [53.46608216197315]
本稿では,大規模言語モデル (LLM) の総合的な性能を評価するための対戦型ベンチマークフレームワークを提案する。
広範にプレイされている5つのゲームをサポートし,20のLDMを駆使したプレーヤーを対象とする,特別な評価プラットフォームであるQi Townを紹介した。
論文 参考訳(メタデータ) (2025-08-05T06:41:47Z) - How large language models judge and influence human cooperation [82.07571393247476]
我々は、最先端の言語モデルが協調行動をどのように判断するかを評価する。
我々は、善良な相手との協力を評価する際、顕著な合意を守ります。
モデル間の差異が協調の頻度に大きく影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2025-06-30T09:14:42Z) - Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games [87.5673042805229]
大規模言語モデルは、アライメント、堅牢性、安全なデプロイメントを保証する上で、いかに自己関心と集合的幸福のバランスをとるかが重要な課題である。
我々は、行動経済学から制度的に選択した公共財ゲームに適応し、異なるLLMがいかに社会的ジレンマをナビゲートするかを観察することができる。
意外なことに、o1シリーズのようなLCMの推論は、協調にかなり苦労している。
論文 参考訳(メタデータ) (2025-06-29T15:02:47Z) - Beyond Nash Equilibrium: Bounded Rationality of LLMs and humans in Strategic Decision-making [33.2843381902912]
大規模言語モデルは、戦略的意思決定設定にますます使われている。
行動ゲーム理論研究に適応した実験パラダイムを用いて,LLMと人間を比較した。
論文 参考訳(メタデータ) (2025-06-11T04:43:54Z) - Arbiters of Ambivalence: Challenges of Using LLMs in No-Consensus Tasks [52.098988739649705]
本研究では, LLMのバイアスと限界について, 応答生成器, 判定器, 討論器の3つの役割について検討した。
我々は、様々な先行的曖昧なシナリオを含む例をキュレートすることで、合意なしのベンチマークを開発する。
以上の結果から, LLMは, オープンエンドの回答を生成する際に, 曖昧な評価を行うことができる一方で, 審査員や討論者として採用する場合は, 合意なしのトピックにスタンスを取る傾向が示唆された。
論文 参考訳(メタデータ) (2025-05-28T01:31:54Z) - Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Tasks [6.355245936740126]
大規模言語モデル(LLM)は、シーケンシャルな意思決定タスクにおいて、人間の振る舞いをシミュレートしたり、自動化したりするためにますます使われている。
我々は、不確実性の下での動的意思決定の基本的な側面である、探査・探索(E&E)トレードオフに焦点を当てる。
推論は、ランダムな探索と指向的な探索の混在を特徴とする、より人間的な行動へとLSMをシフトさせる。
論文 参考訳(メタデータ) (2025-05-15T02:09:18Z) - Measurement of LLM's Philosophies of Human Nature [113.47929131143766]
大規模言語モデル(LLM)を対象とする標準化された心理尺度を設計する。
現在のLSMは、人間に対する信頼の欠如を示す。
本稿では,LLMが継続的に価値体系を最適化できるメンタルループ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-03T06:22:19Z) - How Deep is Love in LLMs' Hearts? Exploring Semantic Size in Human-like Cognition [75.11808682808065]
本研究では,大言語モデル (LLM) が意味的サイズを理解する上で類似した傾向を示すかどうかを検討する。
以上の結果から,マルチモーダルトレーニングはLLMにとって人間的な理解を深める上で不可欠であることが示唆された。
最後に,LLMが実世界のWebショッピングシナリオにおいて,より大きなセマンティックサイズを持つ注目の見出しに影響されているかを検討する。
論文 参考訳(メタデータ) (2025-03-01T03:35:56Z) - Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models [2.9312156642007294]
我々は、意思決定バイアス、推論、創造性の3つの重要な認知領域にわたって、大規模言語モデルの能力を体系的にレビューする。
意思決定では、LSMはいくつかの人間のようなバイアスを示すが、人間の観察するバイアスは欠落している。
GPT-4のような先進的なLCMは、人間のシステム2思考に似た熟考的推論を示し、小さなモデルは人間レベルの性能に欠ける。
LLMはストーリーテリングのような言語ベースの創造的なタスクに優れているが、現実の文脈を必要とする散発的な思考タスクに苦労する。
論文 参考訳(メタデータ) (2024-12-20T02:26:56Z) - Nicer Than Humans: How do Large Language Models Behave in the Prisoner's Dilemma? [0.1474723404975345]
複数レベルの敵意を示すランダムな敵に対する反復的囚人ジレンマの演奏におけるLlama2の協調行動について検討した。
Llama2は欠陥を起こさない傾向にあるが、協調に慎重なアプローチを採用する。
ヒトの参加者に関する以前の研究と比較すると、Llama2は協調行動に対するより強い傾きを示す。
論文 参考訳(メタデータ) (2024-06-19T14:51:14Z) - Human vs. Machine: Behavioral Differences Between Expert Humans and Language Models in Wargame Simulations [1.6108153271585284]
大規模言語モデル(LLM)は、高い軍事的意思決定シナリオにおいて、人間と異なる振る舞いを示す。
当社の結果は、自律性を認める前に政策立案者が慎重であること、あるいはAIベースの戦略レコメンデーションに従うことを動機付けています。
論文 参考訳(メタデータ) (2024-03-06T02:23:32Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
大規模言語モデル(LLM)は、重要な現実世界のアプリケーションに統合される。
本稿では,LLMの競合環境における推論能力について検討する。
まず,広く認識されている10のタスクを構成する言語駆動型環境であるGTBenchを提案する。
論文 参考訳(メタデータ) (2024-02-19T18:23:36Z) - The Wisdom of Partisan Crowds: Comparing Collective Intelligence in
Humans and LLM-based Agents [7.986590413263814]
パルチザンの知恵」は「パルチザンの知恵」として知られる現象である。
パルチザンの群衆は、人間のようなパルチザンの偏見を示すが、人間と同じように熟考を通じてより正確な信念に収束する。
コンバージェンスに干渉するいくつかの要因を同定する。例えば、チェーン・オブ・ソート・プロンプトの使用や、ペルソナにおける詳細の欠如などである。
論文 参考訳(メタデータ) (2023-11-16T08:30:15Z) - ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents [77.34720446306419]
Alympicsは、ゲーム理論の研究にLarge Language Model (LLM)エージェントを利用する、体系的なシミュレーションフレームワークである。
Alympicsは、複雑なゲーム理論の問題を研究するための汎用的なプラットフォームを作成する。
論文 参考訳(メタデータ) (2023-11-06T16:03:46Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Avalon をテストベッドとして使用し,システムプロンプトを用いてゲームプレイにおける LLM エージェントの誘導を行う。
本稿では,Avalonに適した新しいフレームワークを提案し,効率的なコミュニケーションと対話を容易にするマルチエージェントシステムを提案する。
その結果、適応エージェントの作成におけるフレームワークの有効性を確認し、動的社会的相互作用をナビゲートするLLMベースのエージェントの可能性を提案する。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。