論文の概要: Nicer Than Humans: How do Large Language Models Behave in the Prisoner's Dilemma?
- arxiv url: http://arxiv.org/abs/2406.13605v1
- Date: Wed, 19 Jun 2024 14:51:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 19:24:08.004869
- Title: Nicer Than Humans: How do Large Language Models Behave in the Prisoner's Dilemma?
- Title(参考訳): 人間より大きな言語モデル:囚人のジレンマにはどのようにあるのか?
- Authors: Nicoló Fontana, Francesco Pierri, Luca Maria Aiello,
- Abstract要約: 複数レベルの敵意を示すランダムな敵に対する反復的囚人ジレンマの演奏におけるLlama2の協調行動について検討した。
Llama2は欠陥を起こさない傾向にあるが、協調に慎重なアプローチを採用する。
ヒトの参加者に関する以前の研究と比較すると、Llama2は協調行動に対するより強い傾きを示す。
- 参考スコア(独自算出の注目度): 0.1474723404975345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The behavior of Large Language Models (LLMs) as artificial social agents is largely unexplored, and we still lack extensive evidence of how these agents react to simple social stimuli. Testing the behavior of AI agents in classic Game Theory experiments provides a promising theoretical framework for evaluating the norms and values of these agents in archetypal social situations. In this work, we investigate the cooperative behavior of Llama2 when playing the Iterated Prisoner's Dilemma against random adversaries displaying various levels of hostility. We introduce a systematic methodology to evaluate an LLM's comprehension of the game's rules and its capability to parse historical gameplay logs for decision-making. We conducted simulations of games lasting for 100 rounds, and analyzed the LLM's decisions in terms of dimensions defined in behavioral economics literature. We find that Llama2 tends not to initiate defection but it adopts a cautious approach towards cooperation, sharply shifting towards a behavior that is both forgiving and non-retaliatory only when the opponent reduces its rate of defection below 30%. In comparison to prior research on human participants, Llama2 exhibits a greater inclination towards cooperative behavior. Our systematic approach to the study of LLMs in game theoretical scenarios is a step towards using these simulations to inform practices of LLM auditing and alignment.
- Abstract(参考訳): 人工社会エージェントとしてのLarge Language Models (LLMs) の行動はほとんど解明されておらず、これらのエージェントが単純な社会的刺激にどのように反応するかの証拠は乏しい。
古典ゲーム理論の実験においてAIエージェントの振る舞いをテストすることは、これらのエージェントの規範と価値を古来の社会的状況で評価するための有望な理論的枠組みを提供する。
本研究は,Llama2の反復投獄者のジレンマ演奏における,様々なレベルの敵意を示すランダムな敵に対する協調行動について検討する。
ゲームルールに対するLLMの理解度を評価するための体系的手法と,歴史的ゲームログを解析して意思決定を行う能力を紹介する。
我々は,100ラウンドにわたるゲームシミュレーションを行い,行動経済学の文献で定義された次元でLLMの決定を解析した。
Llama2は障害を起こさない傾向にあるが、これは協力への慎重なアプローチを採用しており、相手が欠陥率を30%以下に下げる場合にのみ、予防的かつ非報復的な行動へと急進的に移行している。
ヒトの参加者に関する以前の研究と比較すると、Llama2は協調行動に対するより強い傾きを示す。
ゲーム理論シナリオにおけるLLM研究の体系的アプローチは,これらのシミュレーションを用いてLLM監査とアライメントの実践を通知するためのステップである。
関連論文リスト
- Can Machines Think Like Humans? A Behavioral Evaluation of LLM-Agents in Dictator Games [7.504095239018173]
LLM(Large Language Model)ベースのエージェントは、現実のタスクを担い、人間の社会と関わるようになっている。
本研究では,これらのAIエージェントの利他的行動に異なるペルソナと実験的フレーミングがどのような影響を及ぼすかを検討する。
これらのAIエージェントは、人為的なデータに基づいて訓練されているにもかかわらず、人間の決定を正確に予測することはできない。
論文 参考訳(メタデータ) (2024-10-28T17:47:41Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
本稿では,対戦相手と防御エージェントの反復的相互作用を含む2エージェントゲームのレンズによるアライメントについて検討する。
この反復的強化学習最適化がエージェントによって誘導されるゲームに対するナッシュ平衡に収束することを理論的に実証する。
安全シナリオにおける実験結果から、このような競争環境下での学習は、完全に訓練するエージェントだけでなく、敵エージェントと防御エージェントの両方に対する一般化能力の向上したポリシーにつながることが示されている。
論文 参考訳(メタデータ) (2024-06-16T15:24:50Z) - Human vs. Machine: Behavioral Differences Between Expert Humans and Language Models in Wargame Simulations [1.6108153271585284]
大規模言語モデル(LLM)は、高い軍事的意思決定シナリオにおいて、人間と異なる振る舞いを示す。
当社の結果は、自律性を認める前に政策立案者が慎重であること、あるいはAIベースの戦略レコメンデーションに従うことを動機付けています。
論文 参考訳(メタデータ) (2024-03-06T02:23:32Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
大規模言語モデル(LLM)は、重要な現実世界のアプリケーションに統合される。
本稿では,LLMの競合環境における推論能力について検討する。
まず,広く認識されている10のタスクを構成する言語駆動型環境であるGTBenchを提案する。
論文 参考訳(メタデータ) (2024-02-19T18:23:36Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
論文 参考訳(メタデータ) (2024-02-13T19:46:39Z) - Can Large Language Models Serve as Rational Players in Game Theory? A
Systematic Analysis [16.285154752969717]
本研究では,ゲーム理論の文脈で大規模言語モデル(LLM)を体系的に解析する。
実験により、現在最先端のLLMでさえ、ゲーム理論において人間とはかなり異なることが示されている。
論文 参考訳(メタデータ) (2023-12-09T07:33:26Z) - ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents [77.34720446306419]
Alympicsは、ゲーム理論の研究にLarge Language Model (LLM)エージェントを利用する、体系的なシミュレーションフレームワークである。
Alympicsは、複雑なゲーム理論の問題を研究するための汎用的なプラットフォームを作成する。
論文 参考訳(メタデータ) (2023-11-06T16:03:46Z) - MoCa: Measuring Human-Language Model Alignment on Causal and Moral
Judgment Tasks [49.60689355674541]
認知科学の豊富な文献は人々の因果関係と道徳的直観を研究してきた。
この研究は、人々の判断に体系的に影響を及ぼす多くの要因を明らかにした。
大規模言語モデル(LLM)が、人間の参加者と一致するテキストベースのシナリオについて因果的、道徳的な判断を下すかどうかを検証する。
論文 参考訳(メタデータ) (2023-10-30T15:57:32Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Avalon をテストベッドとして使用し,システムプロンプトを用いてゲームプレイにおける LLM エージェントの誘導を行う。
本稿では,Avalonに適した新しいフレームワークを提案し,効率的なコミュニケーションと対話を容易にするマルチエージェントシステムを提案する。
その結果、適応エージェントの作成におけるフレームワークの有効性を確認し、動的社会的相互作用をナビゲートするLLMベースのエージェントの可能性を提案する。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z) - The Machine Psychology of Cooperation: Can GPT models operationalise prompts for altruism, cooperation, competitiveness and selfishness in economic games? [0.0]
GPT-3.5大言語モデル(LLM)を用いて,協調的,競争的,利他的,利己的行動の自然言語記述を操作可能とした。
被験者と実験心理学研究で用いられるのと同様のプロトコルを用いて,課題環境を記述するためのプロンプトを用いた。
この結果から,LLM が様々な協調姿勢の自然言語記述を適切な作業行動の記述にある程度翻訳できることが示唆された。
論文 参考訳(メタデータ) (2023-05-13T17:23:16Z) - Collective eXplainable AI: Explaining Cooperative Strategies and Agent
Contribution in Multiagent Reinforcement Learning with Shapley Values [68.8204255655161]
本研究は,シェープリー値を用いたマルチエージェントRLにおける協調戦略を説明するための新しい手法を提案する。
結果は、差別的でない意思決定、倫理的かつ責任あるAI由来の意思決定、公正な制約の下での政策決定に影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2021-10-04T10:28:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。