Rethinking Irregular Time Series Forecasting: A Simple yet Effective Baseline
- URL: http://arxiv.org/abs/2505.11250v2
- Date: Fri, 01 Aug 2025 16:26:03 GMT
- Title: Rethinking Irregular Time Series Forecasting: A Simple yet Effective Baseline
- Authors: Xvyuan Liu, Xiangfei Qiu, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Jilin Hu, Bin Yang,
- Abstract summary: We introduce APN, a general and efficient forecasting framework.<n>At the core of APN is a novel Time-Aware Patch Aggregation (ATAPA) module.<n>It computes patch representations via a time-aware weighted aggregation of all raw observations.<n>This approach provides two key advantages: it preserves data fidelity by avoiding the introduction of artificial data points and ensures complete information coverage by design.
- Score: 12.66709671516384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The forecasting of irregular multivariate time series (IMTS) is a critical task in domains like healthcare and climate science. However, this task faces two significant hurdles: 1) the inherent non-uniformity and missing data in IMTS complicate the modeling of temporal dynamics, and 2) existing methods often rely on computationally expensive architectures. To address these dual challenges, we introduce APN, a general and efficient forecasting framework. At the core of APN is a novel Time-Aware Patch Aggregation (TAPA) module that introduces an aggregation-based paradigm for adaptive patching, moving beyond the limitations of fixed-span segmentation and interpolation-based methods. TAPA first learns dynamic temporal boundaries to define data-driven segments. Crucially, instead of resampling or interpolating, it directly computes patch representations via a time-aware weighted aggregation of all raw observations, where weights are determined by each observation's temporal relevance to the segment. This approach provides two key advantages: it preserves data fidelity by avoiding the introduction of artificial data points and ensures complete information coverage by design.The resulting regularized and information-rich patch representations enable the use of a lightweight query module for historical context aggregation and a simple MLP for final prediction. Extensive experiments on multiple real-world datasets demonstrate that APN establishes a new state-of-the-art, significantly outperforming existing methods in both prediction accuracy and computational efficiency.
Related papers
- AHDMIL: Asymmetric Hierarchical Distillation Multi-Instance Learning for Fast and Accurate Whole-Slide Image Classification [51.525891360380285]
AHDMIL is an Asymmetric Hierarchical Distillation Multi-Instance Learning framework.<n>It eliminates irrelevant patches through a two-step training process.<n>It consistently outperforms previous state-of-the-art methods in both classification performance and inference speed.
arXiv Detail & Related papers (2025-08-07T07:47:16Z) - STRGCN: Capturing Asynchronous Spatio-Temporal Dependencies for Irregular Multivariate Time Series Forecasting [14.156419219696252]
STRGCN captures the complex interdependencies in IMTS by representing them as a fully connected graph.<n>Experiments on four public datasets demonstrate that STRGCN achieves state-of-the-art accuracy, competitive memory usage and training speed.
arXiv Detail & Related papers (2025-05-07T06:41:33Z) - TRACE: Time SeRies PArameter EffiCient FinE-tuning [4.398852373014641]
We propose an efficient fine-tuning method for time series foundation models, termed TRACE: Time Series Efficient Fine-tuning.<n>For long-term forecasting tasks, tailored fine-tuning can significantly enhance performance.
arXiv Detail & Related papers (2025-03-21T09:55:43Z) - LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization [3.1819993716919472]
LangTime is a language-guided unified model for time series forecasting.<n>TimePPO is a reinforcement learning-based fine-tuning algorithm.
arXiv Detail & Related papers (2025-03-11T10:40:39Z) - Diffeomorphic Temporal Alignment Nets for Time-series Joint Alignment and Averaging [8.14908648005543]
In time-series analysis, nonlinear temporal misalignment remains a pivotal challenge that forestalls even simple averaging.<n>DTAN predicts and applies diffeomorphic transformations in an input-dependent manner, thus facilitating the joint alignment (JA) and averaging of time-series ensembles.<n>We extend our framework to incorporate multi-task learning (MT-DTAN), enabling simultaneous timeseries alignment and classification.
arXiv Detail & Related papers (2025-02-10T15:55:08Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.<n>A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.<n>An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions.<n>We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation.
arXiv Detail & Related papers (2025-01-08T20:11:09Z) - Generative Regression Based Watch Time Prediction for Short-Video Recommendation [36.95095097454143]
Watch time prediction has emerged as a pivotal task in short video recommendation systems.<n>Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task.<n>We propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task.
arXiv Detail & Related papers (2024-12-28T16:48:55Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
We propose to validate test-time adaptation methods using datasets for autonomous driving, namely CLAD-C and SHIFT.
We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift.
We enhance the well-established self-training framework by incorporating a small memory buffer to increase model stability.
arXiv Detail & Related papers (2023-09-18T19:34:23Z) - Exogenous Data in Forecasting: FARM -- A New Measure for Relevance
Evaluation [62.997667081978825]
We introduce a new approach named FARM - Forward Relevance Aligned Metric.
Our forward method relies on an angular measure that compares changes in subsequent data points to align time-warped series.
As a first validation step, we present the application of our FARM approach to synthetic but representative signals.
arXiv Detail & Related papers (2023-04-21T15:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.