Graph Representational Learning: When Does More Expressivity Hurt Generalization?
- URL: http://arxiv.org/abs/2505.11298v1
- Date: Fri, 16 May 2025 14:28:34 GMT
- Title: Graph Representational Learning: When Does More Expressivity Hurt Generalization?
- Authors: Sohir Maskey, Raffaele Paolino, Fabian Jogl, Gitta Kutyniok, Johannes F. Lutzeyer,
- Abstract summary: Graph Neural Networks (GNNs) are powerful tools for learning on structured data.<n>We introduce a family of premetrics that capture different degrees of structural similarity between graphs.<n>We derive generalization bounds that depend on the distance between training and test graphs, model complexity, and training set size.
- Score: 15.458310474570299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) are powerful tools for learning on structured data, yet the relationship between their expressivity and predictive performance remains unclear. We introduce a family of premetrics that capture different degrees of structural similarity between graphs and relate these similarities to generalization, and consequently, the performance of expressive GNNs. By considering a setting where graph labels are correlated with structural features, we derive generalization bounds that depend on the distance between training and test graphs, model complexity, and training set size. These bounds reveal that more expressive GNNs may generalize worse unless their increased complexity is balanced by a sufficiently large training set or reduced distance between training and test graphs. Our findings relate expressivity and generalization, offering theoretical insights supported by empirical results.
Related papers
- Covered Forest: Fine-grained generalization analysis of graph neural networks [14.729609626353112]
We extend recent advances in graph similarity theory to assess the influence of graph structure, aggregation, and loss functions on MPNNs' generalization abilities.<n>Our empirical study supports our theoretical insights, improving our understanding of MPNNs' generalization properties.
arXiv Detail & Related papers (2024-12-10T01:45:59Z) - Towards Bridging Generalization and Expressivity of Graph Neural Networks [11.560730203511111]
We study the relationship between expressivity and generalization in graph neural networks (GNNs)
We introduce a novel framework that connects GNN generalization to the variance in graph structures they can capture.
We uncover a trade-off between intra-class concentration and inter-class separation, both of which are crucial for effective generalization.
arXiv Detail & Related papers (2024-10-14T00:31:16Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
We introduce a novel method that enables Graph Neural Networks (GNNs) to glean insights from specialized diminutive causal structures.
Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures.
arXiv Detail & Related papers (2024-06-13T00:18:20Z) - Higher Order Structures For Graph Explanations [9.164945693135959]
We present Framework For Higher-Order Representations In Graph Explanations (FORGE)<n>FORGE enables graph explainers to capture higher-order, multi-node interactions.<n>It improves average explanation accuracy by 1.9x and 2.25x, respectively.
arXiv Detail & Related papers (2024-06-05T13:31:30Z) - PAC Learnability under Explanation-Preserving Graph Perturbations [15.83659369727204]
Graph neural networks (GNNs) operate over graphs, enabling the model to leverage the complex relationships and dependencies in graph-structured data.
A graph explanation is a subgraph which is an almost sufficient' statistic of the input graph with respect to its classification label.
This work considers two methods for leveraging such perturbation invariances in the design and training of GNNs.
arXiv Detail & Related papers (2024-02-07T17:23:15Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
This extended abstract describes a framework for analyzing the expressiveness, learning, and (structural) generalization of hypergraph neural networks (HyperGNNs)
Specifically, we focus on how HyperGNNs can learn from finite datasets and generalize structurally to graph reasoning problems of arbitrary input sizes.
arXiv Detail & Related papers (2023-03-09T18:42:18Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
We show that standard Graph Neural Networks (GNNs) produce more discriminative representations than the Weisfeiler-Lehman (WL) algorithm.
We also show that simple convolutional architectures with white inputs, produce equivariant features that count the closed paths in the graph.
arXiv Detail & Related papers (2022-05-19T18:40:25Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from identical distribution.
Existing GNNs lack out-of-distribution generalization abilities so that their performance substantially degrades when there exist distribution shifts between testing and training graph data.
We propose an out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs.
arXiv Detail & Related papers (2021-12-07T16:29:10Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.