Probing Quantum Structure in Gravitational Radiation
- URL: http://arxiv.org/abs/2505.11407v1
- Date: Fri, 16 May 2025 16:16:44 GMT
- Title: Probing Quantum Structure in Gravitational Radiation
- Authors: Sreenath K. Manikandan, Frank Wilczek,
- Abstract summary: We propose, quantitative tests of the hypothesis that a particular class of quantum-mechanical states adequately describe the gravitational radiation field.<n>Our tests readily distinguish fields that contain significant thermal components or squeezing.<n>We identify concrete circumstances in which the classical (i.e., coherent state) hypothesis is likely to fail.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gravitational radiation from known astrophysical sources is conventionally treated classically. This treatment corresponds, implicitly, to the hypothesis that a particular class of quantum-mechanical states -- the so-called coherent states -- adequately describe the gravitational radiation field. We propose practicable, quantitative tests of that hypothesis using resonant bar detectors monitored in coincidence with LIGO-style interferometers. Our tests readily distinguish fields that contain significant thermal components or squeezing. We identify concrete circumstances in which the classical (i.e., coherent state) hypothesis is likely to fail. Such failures are of fundamental interest, in that addressing them requires us to treat the gravitational field quantum-mechanically, and they open a new window into the dynamics of gravitational wave sources.
Related papers
- Testing the Coherent State Description of Radiation Fields [0.0]
We propose simple quantitative criteria, based on counting statistics in resonant harmonic detectors, that probe the quantum mechanical character of radiation fields.<n>They provide, in particular, practical means to test the null hypothesis that a given field is maximally classical'', accurately described by a coherent state.
arXiv Detail & Related papers (2024-09-30T15:11:32Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Quantum gravity signatures in gravitational wave detectors placed inside a harmonic trap potential [0.10713888959520207]
We consider a general gravitational wave detector of gravitational wave interacting with an incoming gravitational wave carrying plus polarization only placed inside a harmonic trap.
We observe a spontaneous emission of a single graviton which was completely absent in the semi-classical analouge of this model.
arXiv Detail & Related papers (2024-05-29T08:29:40Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Testing Whether Gravity Acts as a Quantum Entity When Measured [0.0]
A defining signature of classical systems is "in principle measurability" without disturbance.
We describe a multi-interferometer experimental setup that can, in principle, reveal the nonclassicality of a spatial superposition-sourced gravitational field.
arXiv Detail & Related papers (2023-07-16T19:10:25Z) - Gravitationally induced decoherence vs space-time diffusion: testing the
quantum nature of gravity [0.0]
We consider two interacting systems when one is treated classically while the other system remains quantum.
We prove that such hybrid dynamics necessarily results in decoherence of the quantum system, and a breakdown in predictability in the classical phase space.
Applying the trade-off relation to gravity, we find a relationship between the strength of gravitationally-induced decoherence versus diffusion of the metric and its conjugate momenta.
arXiv Detail & Related papers (2022-03-03T19:52:11Z) - Limits on inference of gravitational entanglement [0.6876932834688035]
We study semi-classical models of the atom interferometer that can reproduce the same effect.
We show that the core signature -- periodic collapses and revivals of the visibility -- can appear if the atom is subject to a random unitary channel.
arXiv Detail & Related papers (2021-11-01T13:35:00Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.