論文の概要: BandRC: Band Shifted Raised Cosine Activated Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2505.11640v1
- Date: Fri, 16 May 2025 19:08:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.757581
- Title: BandRC: Band Shifted Raised Cosine Activated Implicit Neural Representations
- Title(参考訳): BandRC:バンドシフトしたCosine活性化インプシットニューラル表現
- Authors: Pandula Thennakoon, Avishka Ranasinghe, Mario De Silva, Buwaneka Epakanda, Roshan Godaliyadda, Parakrama Ekanayake, Vijitha Herath,
- Abstract要約: 我々は,新しいアクティベーション関数Band-Shifted raised Cosine Activated Implicit Neural Networks textbf(BandRC)を導入する。
既存の芸術アクティベーション機能に対するBandRCの優位性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, implicit neural representations(INRs) have gained popularity in the computer vision community. This is mainly due to the strong performance of INRs in many computer vision tasks. These networks can extract a continuous signal representation given a discrete signal representation. In previous studies, it has been repeatedly shown that INR performance has a strong correlation with the activation functions used in its multilayer perceptrons. Although numerous activation functions have been proposed that are competitive with one another, they share some common set of challenges such as spectral bias(Lack of sensitivity to high-frequency content in signals), limited robustness to signal noise and difficulties in simultaneous capturing both local and global features. and furthermore, the requirement for manual parameter tuning. To address these issues, we introduce a novel activation function, Band Shifted Raised Cosine Activated Implicit Neural Networks \textbf{(BandRC)} tailored to enhance signal representation capacity further. We also incorporate deep prior knowledge extracted from the signal to adjust the activation functions through a task-specific model. Through a mathematical analysis and a series of experiments which include image reconstruction (with a +8.93 dB PSNR improvement over the nearest counterpart), denoising (with a +0.46 dB increase in PSNR), super-resolution (with a +1.03 dB improvement over the nearest State-Of-The-Art (SOTA) method for 6X super-resolution), inpainting, and 3D shape reconstruction we demonstrate the dominance of BandRC over existing state of the art activation functions.
- Abstract(参考訳): 近年、暗黙の神経表現(INR)がコンピュータビジョンコミュニティで人気を集めている。
これは主に、多くのコンピュータビジョンタスクにおけるINRの強いパフォーマンスに起因する。
これらのネットワークは、離散信号表現が与えられた連続信号表現を抽出することができる。
これまでの研究では、INR性能が多層パーセプトロンで用いられる活性化関数と強く相関していることが繰り返し示されている。
互いに競合する多くのアクティベーション関数が提案されているが、スペクトルバイアス(信号の高周波コンテンツに対する感度の欠如)、信号ノイズに対するロバスト性、局所的特徴と大域的特徴を同時に捉えることの難しさなど、いくつかの共通の課題を共有している。
さらに手動パラメータチューニングの要件も必要です。
これらの問題に対処するために、信号表現能力をさらに向上するために、新しいアクティベーション関数、Band Shifted Cosine Activated Implicit Neural Networks \textbf{(BandRC)}を導入する。
また,信号から抽出した深い事前知識を組み込んで,タスク固有モデルによるアクティベーション関数の調整を行う。
数学的解析と一連の実験により、画像再構成(最寄りのPSNRに対する+8.93 dBの改善)、復調(PSNRの+0.46 dB向上)、超解像(6X超解像に対する最寄りのState-Of-The-Art(SOTA)法に対する+1.03 dBの改善)、塗装、3D形状再構成により、既存の最先端のアクティベーション関数に対するBandRCの優位性を実証する。
関連論文リスト
- SL$^{2}$A-INR: Single-Layer Learnable Activation for Implicit Neural Representation [6.572456394600755]
Inlicit Neural Representation (INR)は、ニューラルネットワークを利用して、座標入力を対応する属性に変換することで、視覚関連領域において大きな進歩をもたらした。
我々は,INRアーキテクチャに新しいアプローチを導入することで,これらの課題を緩和できることを示す。
具体的には,シングルレイヤの学習可能なアクティベーション関数と従来のReLUアクティベーションを用いた合成を組み合わせたハイブリッドネットワークSL$2$A-INRを提案する。
論文 参考訳(メタデータ) (2024-09-17T02:02:15Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
入射神経表現(INR)は、複雑な信号の連続的および分解非依存的な表現を提供するためにニューラルネットワークを使用する。
提案したFKANは、第1層のフーリエ級数としてモデル化された学習可能なアクティベーション関数を用いて、タスク固有の周波数成分を効果的に制御し、学習する。
実験結果から,提案したFKANモデルは,最先端の3つのベースラインスキームよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-14T05:53:33Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings [4.639495398851869]
Inlicit Neural Representation (INR)は、複雑なデータの連続的かつ滑らかな表現を提供するためにニューラルネットワークを活用することで、信号表現に革命をもたらした。
InCODEは、深い事前知識を用いて、INRにおける正弦波ベースの活性化関数の制御を強化する新しいアプローチである。
提案手法は表現力に優れるだけでなく,音声,画像,3次元形状復元などの複雑な課題に対処する能力も拡張している。
論文 参考訳(メタデータ) (2023-10-28T23:16:49Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFieldsは、複雑な時間的信号を効果的に表現するために設計された新しいネットワークのクラスである。
本稿では,ResFieldの特性を包括的に解析し,トレーニング可能なパラメータの数を減らすための行列分解手法を提案する。
スパースRGBDカメラからダイナミックな3Dシーンをキャプチャする効果を示すことで,ResFieldsの実用性を実証する。
論文 参考訳(メタデータ) (2023-09-06T16:59:36Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
ノイズの多いHSIからクリーンなHSIへのマッピングを学習するために,注目に基づくディープ残差ネットワークを提案する。
実験の結果,提案手法は定量的および視覚的評価において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-04T08:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。