Optimizing Interplanetary Trajectories using Hybrid Meta-heuristic
- URL: http://arxiv.org/abs/2505.12399v1
- Date: Sun, 18 May 2025 12:53:48 GMT
- Title: Optimizing Interplanetary Trajectories using Hybrid Meta-heuristic
- Authors: Amin Abdollahi Dehkordi, Mehdi Neshat,
- Abstract summary: This paper proposes an advanced hybrid optimization (GMPA) algorithm to address the inherent limitations of the Grey Wolf Predators (GWO)<n>GMPA integrates essential features from the Marine Algorithm (MPA) into the GWO framework, enabling superior performance through enhanced exploration and exploitation balance.<n> Empirical evaluations demonstrate GMPA's superior effectiveness compared to traditional GWO and other advanced metaheuristic algorithms.
- Score: 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes an advanced hybrid optimization (GMPA) algorithm to effectively address the inherent limitations of the Grey Wolf Optimizer (GWO) when applied to complex optimization scenarios. Specifically, GMPA integrates essential features from the Marine Predators Algorithm (MPA) into the GWO framework, enabling superior performance through enhanced exploration and exploitation balance. The evaluation utilizes the GTOPX benchmark dataset from the European Space Agency (ESA), encompassing highly complex interplanetary trajectory optimization problems characterized by pronounced nonlinearity and multiple conflicting objectives reflective of real-world aerospace scenarios. Central to GMPA's methodology is an elite matrix, borrowed from MPA, designed to preserve and refine high-quality solutions iteratively, thereby promoting solution diversity and minimizing premature convergence. Furthermore, GMPA incorporates a three-phase position updating mechanism combined with L\'evy flights and Brownian motion to significantly bolster exploration capabilities, effectively mitigating the risk of stagnation in local optima. GMPA dynamically retains historical information on promising search areas, leveraging the memory storage features intrinsic to MPA, facilitating targeted exploitation and refinement. Empirical evaluations demonstrate GMPA's superior effectiveness compared to traditional GWO and other advanced metaheuristic algorithms, achieving markedly improved convergence rates and solution quality across GTOPX benchmarks. Consequently, GMPA emerges as a robust, efficient, and adaptive optimization approach particularly suitable for high-dimensional and complex aerospace trajectory optimization, offering significant insights and practical advancements in hybrid metaheuristic optimization techniques.
Related papers
- Improved particle swarm optimization algorithm: multi-target trajectory optimization for swarm drones [20.531764063763678]
Traditional Particle Swarm Optimization (PSO) methods struggle with premature convergence and latency in real-time scenarios.<n>We propose PE-PSO, an enhanced PSO-based online trajectory planner.<n>We develop a multi-agent framework that combines genetic algorithm (GA)-based task allocation with distributed PE-PSO, supporting scalable and coordinated trajectory generation.
arXiv Detail & Related papers (2025-07-18T04:31:49Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
Reinforcement Learning (RL) has emerged as a powerful tool for neural optimization, enabling models learns that solve complex problems without requiring expert knowledge.<n>Despite significant progress, existing RL approaches face challenges such as diminishing reward signals and inefficient exploration in vast action spaces.<n>We propose Preference Optimization, a novel method that transforms quantitative reward signals into qualitative preference signals via statistical comparison modeling.
arXiv Detail & Related papers (2025-05-13T16:47:00Z) - Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
We propose a smooth variant of the min-max problem based on the augmented Lagrangian.<n>The proposed algorithm scales better with the number of objectives than subgradient-based strategies.
arXiv Detail & Related papers (2025-03-16T11:05:51Z) - Goat Optimization Algorithm: A Novel Bio-Inspired Metaheuristic for Global Optimization [1.2289361708127877]
This paper presents a novel bio-inspired metaheuristic optimization technique inspired by goats' adaptive foraging, strategic movement, and parasite avoidance behaviors.<n>The algorithm's performance is evaluated on standard unimodal benchmark functions.<n>The findings suggest that GOA is a promising advancement in bio-inspired optimization techniques.
arXiv Detail & Related papers (2025-03-04T06:44:07Z) - Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management [50.34345101758248]
We propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions.<n>Our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency.<n>Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
arXiv Detail & Related papers (2025-02-25T16:15:35Z) - COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs [81.01082659623552]
Large Language Models (LLMs) have demonstrated remarkable success across various domains.<n>Their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit.
arXiv Detail & Related papers (2025-02-24T18:42:19Z) - A RankNet-Inspired Surrogate-Assisted Hybrid Metaheuristic for Expensive Coverage Optimization [5.757318591302855]
We propose a RankNet-Inspired Surrogate-assisted Hybrid Metaheuristic to handle large-scale coverage optimization tasks.<n>Our algorithm consistently outperforms state-of-the-art algorithms for EMVOPs.
arXiv Detail & Related papers (2025-01-13T14:49:05Z) - SPGD: Steepest Perturbed Gradient Descent Optimization [0.0]
This paper presents the Steepest Perturbed Gradient Descent (SPGD) algorithm.<n>It is designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference.<n>Preliminary results show a substantial improvement over four established methods.
arXiv Detail & Related papers (2024-11-07T18:23:30Z) - Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction [71.81851971324187]
This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL)
HPO addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks.
Experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines.
arXiv Detail & Related papers (2024-11-01T04:58:40Z) - Halfway Escape Optimization: A Quantum-Inspired Solution for General Optimization Problems [6.3816899727206895]
This paper first proposes the Halfway Escape Optimization (HEO) algorithm, a quantum-inspired metaheuristic designed to address general optimization problems.
After the introduction to the HEO mechansims, the study presents a comprehensive evaluation of HEO's performance against extensively-used optimization algorithms.
The test of HEO in Pressure Vessel Design and Tubular Column Design infers its feasibility and potential in real-time applications.
arXiv Detail & Related papers (2024-05-05T08:43:07Z) - Hybrid Evolutionary Optimization Approach for Oilfield Well Control
Optimization [0.0]
Oilfield production optimization is challenging due to subsurface model complexity and associated non-linearity.
This paper presents efficacy of two hybrid evolutionary optimization approaches for well control optimization of a waterflooding operation.
arXiv Detail & Related papers (2021-03-29T13:36:51Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.