EpiLLM: Unlocking the Potential of Large Language Models in Epidemic Forecasting
- URL: http://arxiv.org/abs/2505.12738v1
- Date: Mon, 19 May 2025 05:53:25 GMT
- Title: EpiLLM: Unlocking the Potential of Large Language Models in Epidemic Forecasting
- Authors: Chenghua Gong, Rui Sun, Yuhao Zheng, Juyuan Zhang, Tianjun Gu, Liming Pan, Linyuan Lv,
- Abstract summary: Large Language Models (LLMs) have demonstrated effectiveness as foundation models for domain-specific tasks.<n>Recent advances in EpiLLM outperforms existing baselines on real-world COVID-19 datasets.
- Score: 2.9557992468454533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced epidemic forecasting is critical for enabling precision containment strategies, highlighting its strategic importance for public health security. While recent advances in Large Language Models (LLMs) have demonstrated effectiveness as foundation models for domain-specific tasks, their potential for epidemic forecasting remains largely unexplored. In this paper, we introduce EpiLLM, a novel LLM-based framework tailored for spatio-temporal epidemic forecasting. Considering the key factors in real-world epidemic transmission: infection cases and human mobility, we introduce a dual-branch architecture to achieve fine-grained token-level alignment between such complex epidemic patterns and language tokens for LLM adaptation. To unleash the multi-step forecasting and generalization potential of LLM architectures, we propose an autoregressive modeling paradigm that reformulates the epidemic forecasting task into next-token prediction. To further enhance LLM perception of epidemics, we introduce spatio-temporal prompt learning techniques, which strengthen forecasting capabilities from a data-driven perspective. Extensive experiments show that EpiLLM significantly outperforms existing baselines on real-world COVID-19 datasets and exhibits scaling behavior characteristic of LLMs.
Related papers
- Epidemic-guided deep learning for spatiotemporal forecasting of Tuberculosis outbreak [0.0]
Tuberosis (TB) remains a formidable global health challenge, driven by complex transmission dynamics and influenced by factors such as population mobility and behavioral changes.<n>We propose an Epidemic-Guided Deep Learning approach that fuses mechanistic epidemiological principles with advanced deep learning techniques.
arXiv Detail & Related papers (2025-02-15T12:39:42Z) - Investigating the Zone of Proximal Development of Language Models for In-Context Learning [59.91708683601029]
We introduce a learning analytics framework to analyze the in-context learning (ICL) behavior of large language models (LLMs)<n>We adapt the Zone of Proximal Development (ZPD) theory to ICL, measuring the ZPD of LLMs based on model performance on individual examples.<n>Our findings reveal a series of intricate and multifaceted behaviors of ICL, providing new insights into understanding and leveraging this technique.
arXiv Detail & Related papers (2025-02-10T19:36:21Z) - Towards the efficacy of federated prediction for epidemics on networks [5.719600613434056]
We develop a general privacy-level framework for node-level prediction on epidemic networks based on federated learning (FL)<n>This study offers practical insights into the efficacy of FL scenario in epidemic management.
arXiv Detail & Related papers (2024-12-03T04:37:28Z) - Epidemic Information Extraction for Event-Based Surveillance using Large Language Models [2.1679642267617756]
This paper presents a novel approach to epidemic surveillance, leveraging the power of Artificial Intelligence and Large Language Models (LLMs)
LLMs can significantly enhance the accuracy and timeliness of epidemic modelling and forecasting, offering a promising tool for managing future pandemic events.
arXiv Detail & Related papers (2024-08-26T13:53:04Z) - A Short Survey of Human Mobility Prediction in Epidemic Modeling from Transformers to LLMs [0.0]
Understanding how people move during epidemics is essential for modeling the spread of diseases.
Forecasting population movement is crucial for informing models and facilitating effective response planning in public health emergencies.
We review a range of approaches utilizing both pretrained language models like BERT and Large Language Models (LLMs) tailored specifically for mobility prediction tasks.
arXiv Detail & Related papers (2024-04-25T17:52:19Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Advancing Real-time Pandemic Forecasting Using Large Language Models: A COVID-19 Case Study [39.70947911556511]
Existing forecasting models struggle with the multifaceted nature of relevant data and robust results translation.
Our work introduces PandemicLLM, a novel framework that reformulates real-time forecasting of disease spread as a text reasoning problem.
The model is applied to the COVID-19 pandemic, and trained to utilize textual public health policies, genomic surveillance, spatial, and epidemiological time series data.
arXiv Detail & Related papers (2024-04-10T12:22:03Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.<n>This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.<n>We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.