Advancing Real-time Pandemic Forecasting Using Large Language Models: A COVID-19 Case Study
- URL: http://arxiv.org/abs/2404.06962v1
- Date: Wed, 10 Apr 2024 12:22:03 GMT
- Title: Advancing Real-time Pandemic Forecasting Using Large Language Models: A COVID-19 Case Study
- Authors: Hongru Du, Jianan Zhao, Yang Zhao, Shaochong Xu, Xihong Lin, Yiran Chen, Lauren M. Gardner, Hao, Yang,
- Abstract summary: Existing forecasting models struggle with the multifaceted nature of relevant data and robust results translation.
Our work introduces PandemicLLM, a novel framework that reformulates real-time forecasting of disease spread as a text reasoning problem.
The model is applied to the COVID-19 pandemic, and trained to utilize textual public health policies, genomic surveillance, spatial, and epidemiological time series data.
- Score: 39.70947911556511
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Forecasting the short-term spread of an ongoing disease outbreak is a formidable challenge due to the complexity of contributing factors, some of which can be characterized through interlinked, multi-modality variables such as epidemiological time series data, viral biology, population demographics, and the intersection of public policy and human behavior. Existing forecasting model frameworks struggle with the multifaceted nature of relevant data and robust results translation, which hinders their performances and the provision of actionable insights for public health decision-makers. Our work introduces PandemicLLM, a novel framework with multi-modal Large Language Models (LLMs) that reformulates real-time forecasting of disease spread as a text reasoning problem, with the ability to incorporate real-time, complex, non-numerical information that previously unattainable in traditional forecasting models. This approach, through a unique AI-human cooperative prompt design and time series representation learning, encodes multi-modal data for LLMs. The model is applied to the COVID-19 pandemic, and trained to utilize textual public health policies, genomic surveillance, spatial, and epidemiological time series data, and is subsequently tested across all 50 states of the U.S. Empirically, PandemicLLM is shown to be a high-performing pandemic forecasting framework that effectively captures the impact of emerging variants and can provide timely and accurate predictions. The proposed PandemicLLM opens avenues for incorporating various pandemic-related data in heterogeneous formats and exhibits performance benefits over existing models. This study illuminates the potential of adapting LLMs and representation learning to enhance pandemic forecasting, illustrating how AI innovations can strengthen pandemic responses and crisis management in the future.
Related papers
- A Multilateral Attention-enhanced Deep Neural Network for Disease Outbreak Forecasting: A Case Study on COVID-19 [0.6874745415692134]
We propose a novel approach to address the challenges of infectious disease forecasting.
We introduce a Multilateral Attention-enhanced GRU model that leverages information from multiple sources.
By incorporating attention mechanisms within a GRU framework, our model can effectively capture complex relationships and temporal dependencies in the data.
arXiv Detail & Related papers (2024-08-26T06:31:53Z) - A Short Survey of Human Mobility Prediction in Epidemic Modeling from Transformers to LLMs [0.0]
Understanding how people move during epidemics is essential for modeling the spread of diseases.
Forecasting population movement is crucial for informing models and facilitating effective response planning in public health emergencies.
We review a range of approaches utilizing both pretrained language models like BERT and Large Language Models (LLMs) tailored specifically for mobility prediction tasks.
arXiv Detail & Related papers (2024-04-25T17:52:19Z) - Multimodal Graph Learning for Modeling Emerging Pandemics with Big Data [3.4512624130325786]
We propose a novel framework called MGL4MEP that integrates temporal graph neural networks and multi-modal data for learning and forecasting.
We incorporate big data sources, including social media content, by utilizing specific pre-trained language models.
This integration provides rich indicators of pandemic dynamics through learning with temporal graph neural networks.
arXiv Detail & Related papers (2023-10-23T04:05:19Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Combining Graph Neural Networks and Spatio-temporal Disease Models to
Predict COVID-19 Cases in Germany [0.0]
Several experts have called for the necessity to account for human mobility to explain the spread of COVID-19.
Most statistical or epidemiological models cannot directly incorporate unstructured data sources, including data that may encode human mobility.
We propose a trade-off between both research directions and present a novel learning approach that combines the advantages of statistical regression and machine learning models.
arXiv Detail & Related papers (2021-01-03T16:39:00Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
arXiv Detail & Related papers (2020-09-23T22:35:43Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.