論文の概要: Efficient Generation of Parameterised Quantum Circuits from Large Texts
- arxiv url: http://arxiv.org/abs/2505.13208v1
- Date: Mon, 19 May 2025 14:57:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.675792
- Title: Efficient Generation of Parameterised Quantum Circuits from Large Texts
- Title(参考訳): 大規模テキストからのパラメータ化量子回路の効率的な生成
- Authors: Colin Krawchuk, Nikhil Khatri, Neil John Ortega, Dimitri Kartsaklis,
- Abstract要約: DisCoCircは、文書全体をパラメータ化された量子回路(PQC)として直接符号化することができる
本稿では,前グループ図のツリー様表現を用いて,大規模テキストを量子回路に変換する手法を提案する。
- 参考スコア(独自算出の注目度): 0.3298092151372303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum approaches to natural language processing (NLP) are redefining how linguistic information is represented and processed. While traditional hybrid quantum-classical models rely heavily on classical neural networks, recent advancements propose a novel framework, DisCoCirc, capable of directly encoding entire documents as parameterised quantum circuits (PQCs), besides enjoying some additional interpretability and compositionality benefits. Following these ideas, this paper introduces an efficient methodology for converting large-scale texts into quantum circuits using tree-like representations of pregroup diagrams. Exploiting the compositional parallels between language and quantum mechanics, grounded in symmetric monoidal categories, our approach enables faithful and efficient encoding of syntactic and discourse relationships in long and complex texts (up to 6410 words in our experiments) to quantum circuits. The developed system is provided to the community as part of the augmented open-source quantum NLP package lambeq Gen II.
- Abstract(参考訳): 自然言語処理(NLP)への量子的アプローチは、言語情報の表現と処理方法を再定義している。
従来のハイブリッド量子古典モデルは古典的ニューラルネットワークに大きく依存しているが、最近の進歩は、新しいフレームワークであるDisCoCircを提案している。
そこで本研究では,大規模テキストを前グループ図のツリー様表現を用いて量子回路に変換する手法を提案する。
対称なモノイダル圏を基盤とした言語と量子力学のコンポジションパラレルを探索することにより、長文および複素文(実験では6410語まで)の合成と談話の関係を忠実かつ効率的に量子回路に符号化することが可能となる。
開発システムは、拡張オープンソースの量子NLPパッケージlambeq Gen IIの一部としてコミュニティに提供される。
関連論文リスト
- Multimodal Quantum Natural Language Processing: A Novel Framework for using Quantum Methods to Analyse Real Data [0.0]
この論文は、量子計算法が言語の合成モデリングをどのように強化するかを考察する。
具体的には、マルチモーダル量子自然言語処理 (MQNLP) を Lambeq ツールキットを用いて進める。
結果は、構文ベースのモデル、特にDisCoCatやTreeReaderが文法構造を効果的に捉えるのに優れていることを示している。
論文 参考訳(メタデータ) (2024-10-29T19:03:43Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Algorithms for Compositional Text Processing [1.3654846342364308]
本稿では、最近提案された自然言語用DisCoCircフレームワークに注目し、量子適応QDisCoCircを提案する。
これはAI解釈可能なレンダリングに対する構成的アプローチによって動機付けられている。
テキスト類似性のモデルネイティブな原始演算に対しては、フォールトトレラントな量子コンピュータのための量子アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-08-12T11:21:40Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Toward Quantum Machine Translation of Syntactically Distinct Languages [0.0]
ノイズの多い中間規模量子(NISQ)デバイス上での量子自然言語処理アルゴリズムを用いた言語翻訳の実現可能性について検討する。
パラメタライズド量子回路の性能において、回転ゲートの適切な角度が重要な役割を果たすことを示すためにシャノンエントロピーを用いる。
論文 参考訳(メタデータ) (2023-07-31T11:24:54Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
本稿では、量子機械学習と量子意味表現の進歩を活かした新しい量子意味通信(QSC)フレームワークを提案する。
提案手法は,高い量子セマンティック忠実度を達成しつつ,必要な量子通信資源の約50~75%の削減を実現する。
論文 参考訳(メタデータ) (2022-05-05T03:49:19Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - Foundations for Near-Term Quantum Natural Language Processing [0.17205106391379021]
量子自然言語処理(QNLP)の概念と数学的基礎を提供する。
自然言語の量子モデルがどのように言語的意味と豊かな言語構造を正準的に組み合わせているかを思い出す。
実証的エビデンスと数学一般性に関する正式な記述を支援するための参照を提供します。
論文 参考訳(メタデータ) (2020-12-07T14:49:33Z) - Quantum Natural Language Processing on Near-Term Quantum Computers [0.0]
近距離量子コンピュータにおける自然言語処理のためのフルスタックパイプライン、別名QNLPについて述べる。
DisCoCatは、前グループ文法の構成構造を拡張し補完する言語モデリングフレームワークである。
本稿では,DisCoCat図を量子回路にマッピングする手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T16:42:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。