論文の概要: End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance Images
- arxiv url: http://arxiv.org/abs/2505.14017v1
- Date: Tue, 20 May 2025 07:18:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.851253
- Title: End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance Images
- Title(参考訳): 臨床磁気共鳴画像による終末皮質表面の再構成
- Authors: Jesper Duemose Nielsen, Karthik Gopinath, Andrew Hoopes, Adrian Dalca, Colin Magdamo, Steven Arnold, Sudeshna Das, Axel Thielscher, Juan Eugenio Iglesias, Oula Puonti,
- Abstract要約: 我々は、コントラストと解像度のスキャンから皮質表面を明示的に推定するために、最初のニューラルネットワークを訓練する。
提案手法は, テンプレートメッシュをホワイトマター (WM) 面に変形させ, トポロジカルな正当性を保証する。
高分解能T1wスキャンでFreeSurferが検出した老化関連大脳皮質の微細化パターンを再現し,大脳皮質の厚さ誤差(0.50mmから0.24mm)を約50%低減した。
- 参考スコア(独自算出の注目度): 2.920414237330382
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surface-based cortical analysis is valuable for a variety of neuroimaging tasks, such as spatial normalization, parcellation, and gray matter (GM) thickness estimation. However, most tools for estimating cortical surfaces work exclusively on scans with at least 1 mm isotropic resolution and are tuned to a specific magnetic resonance (MR) contrast, often T1-weighted (T1w). This precludes application using most clinical MR scans, which are very heterogeneous in terms of contrast and resolution. Here, we use synthetic domain-randomized data to train the first neural network for explicit estimation of cortical surfaces from scans of any contrast and resolution, without retraining. Our method deforms a template mesh to the white matter (WM) surface, which guarantees topological correctness. This mesh is further deformed to estimate the GM surface. We compare our method to recon-all-clinical (RAC), an implicit surface reconstruction method which is currently the only other tool capable of processing heterogeneous clinical MR scans, on ADNI and a large clinical dataset (n=1,332). We show a approximately 50 % reduction in cortical thickness error (from 0.50 to 0.24 mm) with respect to RAC and better recovery of the aging-related cortical thinning patterns detected by FreeSurfer on high-resolution T1w scans. Our method enables fast and accurate surface reconstruction of clinical scans, allowing studies (1) with sample sizes far beyond what is feasible in a research setting, and (2) of clinical populations that are difficult to enroll in research studies. The code is publicly available at https://github.com/simnibs/brainnet.
- Abstract(参考訳): 表面ベースの皮質解析は、空間正規化、パーセレーション、グレーマター(GM)の厚さ推定など、様々なニューロイメージングタスクに有用である。
しかし、皮質表面を推定するためのほとんどのツールは、少なくとも1mm等方分解能のスキャンでのみ機能し、特定の磁気共鳴(MR)コントラスト(T1重み付き(T1w))に調整される。
これは、コントラストと分解能の点で非常に異質な、ほとんどの臨床MRスキャンの使用を妨げている。
ここでは、合成ドメインランダム化データを用いて、任意のコントラストと解像度のスキャンから皮質表面を明示的に推定する最初のニューラルネットワークを、再トレーニングすることなくトレーニングする。
提案手法は, テンプレートメッシュをホワイトマター (WM) 面に変形させ, トポロジカルな正当性を保証する。
このメッシュはさらに変形してGM表面を推定する。
我々は,ADNIと大規模臨床データセット(n=1,332)を用いて,現在,異種臨床MRスキャンを処理できる唯一のツールである暗黙的表面再構成法であるRACとの比較を行った。
高分解能T1wスキャンでFreeSurferが検出した老化関連大脳皮質減肉パターンの回復率は,RACに対して約50%低下した(0.50mmから0.24mm)。
本手法により, 臨床スキャンの迅速かつ正確な表面再構成が可能となり, 1) 研究環境では実現不可能な試料サイズ, (2) 研究への参加が困難である臨床集団の発見が可能となった。
コードはhttps://github.com/simnibs/brainnet.comで公開されている。
関連論文リスト
- Recon-all-clinical: Cortical surface reconstruction and analysis of heterogeneous clinical brain MRI [3.639043225506316]
脳MRIにおける大脳皮質再建, 登録, パーセレーション, 厚さ推定のための新しい手法であるrecon-all-clinicalを紹介した。
提案手法では,ドメインランダム化を訓練した畳み込みニューラルネットワーク(CNN)を組み合わせて,符号付き距離関数の予測を行う。
19,000件以上の臨床検査を含む,複数のデータセットを対象に,再構成全臨床検査を行った。
論文 参考訳(メタデータ) (2024-09-05T19:52:09Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
CIMIL-CRCは、事前学習した特徴抽出モデルと主成分分析(PCA)を効率よく組み合わせ、全てのパッチから情報を集約することで、MSI/MSS MIL問題を解決するフレームワークである。
我々は,TCGA-CRC-DXコホートを用いたモデル開発のための5倍のクロスバリデーション実験装置を用いて,曲線下平均面積(AUC)を用いてCIMIL-CRC法の評価を行った。
論文 参考訳(メタデータ) (2024-01-29T12:56:11Z) - FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and
adjacent structures on high-resolutional brain MRI [3.869627124798774]
視床下部のサブセグメンテーションのためのHypVINNという,新しい,高速で,完全自動化されたディープラーニング手法を提案する。
我々は,視床下部の容積効果を再現するためのセグメンテーション精度,一般化可能性,セッション内テストの信頼性,感度に関して,我々のモデルを広範囲に検証した。
論文 参考訳(メタデータ) (2023-08-24T12:26:38Z) - Cortical analysis of heterogeneous clinical brain MRI scans for
large-scale neuroimaging studies [2.930354460501359]
皮質の表面分析は、例えば、皮質登録、パーセル化、厚さ推定など、MRIによるヒトの神経イメージングにおいてユビキタスである。
臨床脳MRI検査における大脳皮質再建, 登録, パーセレーション, 厚み推定法について検討した。
論文 参考訳(メタデータ) (2023-05-02T23:36:06Z) - Multiple Instance Ensembling For Paranasal Anomaly Classification In The
Maxillary Sinus [46.1292414445895]
副鼻腔奇形は幅広い形態学的特徴を持つ。
副鼻腔異常分類への現在のアプローチは、一度に1つの異常を特定することに制約されている。
3次元畳み込みニューラルネットワーク(CNN)を用いて正常上顎骨(MS)とMSをポリープや嚢胞で分類する可能性を検討した。
論文 参考訳(メタデータ) (2023-03-31T09:23:27Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes
from clinical MRI exams with scans of different orientation, resolution and
contrast [4.987889348212769]
コントラスト,解像度,方向の異なる1つ以上の厚いスライススキャンを受信するCNNの訓練方法であるSynthSRを提案する。
提案手法では,ストリッピングやバイアスフィールド補正などの前処理は不要である。
論文 参考訳(メタデータ) (2020-12-24T17:29:53Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。