論文の概要: SimCortex: Collision-free Simultaneous Cortical Surfaces Reconstruction
- arxiv url: http://arxiv.org/abs/2507.06955v1
- Date: Wed, 09 Jul 2025 15:38:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.646797
- Title: SimCortex: Collision-free Simultaneous Cortical Surfaces Reconstruction
- Title(参考訳): SimCortex: 衝突のない同時皮質表面再構成
- Authors: Kaveh Moradkhani, R Jarrett Rushmore, Sylvain Bouix,
- Abstract要約: 現在の手法では、複雑な皮質幾何学、厳密な位相的要件、重なり合い、自己断面積、位相的欠陥のある曲面をしばしば生成しなければならない。
我々は、T1強調(T1w)MRIボリュームからすべての脳表面を同時に再構築するディープラーニングフレームワークであるSimCortexを紹介する。
提案手法は表面衝突や自己断面積を著しく減らしたスムーズなトポロジー保存変換を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate cortical surface reconstruction from magnetic resonance imaging (MRI) data is crucial for reliable neuroanatomical analyses. Current methods have to contend with complex cortical geometries, strict topological requirements, and often produce surfaces with overlaps, self-intersections, and topological defects. To overcome these shortcomings, we introduce SimCortex, a deep learning framework that simultaneously reconstructs all brain surfaces (left/right white-matter and pial) from T1-weighted(T1w) MRI volumes while preserving topological properties. Our method first segments the T1w image into a nine-class tissue label map. From these segmentations, we generate subject-specific, collision-free initial surface meshes. These surfaces serve as precise initializations for subsequent multiscale diffeomorphic deformations. Employing stationary velocity fields (SVFs) integrated via scaling-and-squaring, our approach ensures smooth, topology-preserving transformations with significantly reduced surface collisions and self-intersections. Evaluations on standard datasets demonstrate that SimCortex dramatically reduces surface overlaps and self-intersections, surpassing current methods while maintaining state-of-the-art geometric accuracy.
- Abstract(参考訳): 磁気共鳴画像(MRI)データからの正確な皮質表面再構成は、信頼性の高い神経解剖学的解析に不可欠である。
現在の手法では、複雑な皮質幾何学、厳密な位相的要件、重なり合い、自己断面積、位相的欠陥のある曲面をしばしば生成しなければならない。
これらの欠点を克服するために、トポロジ的特性を維持しながらT1強調(T1w)MRIボリュームからすべての脳表面(左右のホワイトマターとピアル)を同時に再構築するディープラーニングフレームワークであるSimCortexを紹介した。
本手法はまずT1w画像を9種類の組織ラベルマップに分割する。
これらのセグメンテーションから、主観的、衝突のない初期表面メッシュを生成する。
これらの曲面は、その後の多スケールの微分同相変形の正確な初期化となる。
定常速度場 (SVFs) をスケーリング・アンド・エクアリングにより統合することにより, 表面衝突と自己断面積を著しく減少させるスムーズなトポロジー保存変換を実現する。
標準データセットの評価によると、SimCortexは表面の重なりと自己断面積を劇的に減らし、最先端の幾何学的精度を維持しながら現在の手法を超越している。
関連論文リスト
- Generalized Linear Mode Connectivity for Transformers [87.32299363530996]
驚くべき現象はリニアモード接続(LMC)であり、独立に訓練されたモデルを低損失またはゼロ損失の経路で接続することができる。
以前の研究は主に置換によるニューロンの並べ替えに焦点を合わせてきたが、そのようなアプローチは範囲に限られている。
我々は、4つの対称性クラス(置換、半置換、変換、一般可逆写像)をキャプチャする統一的なフレームワークを導入する。
この一般化により、独立に訓練された視覚変換器とGPT-2モデルの間の低障壁とゼロバリア線形経路の発見が可能となった。
論文 参考訳(メタデータ) (2025-06-28T01:46:36Z) - Thin-Shell-SfT: Fine-Grained Monocular Non-rigid 3D Surface Tracking with Neural Deformation Fields [66.1612475655465]
RGBビデオから変形可能な表面を3Dで再現することは難しい問題だ。
既存の方法は、統計的、神経的、物理的に先行する変形モデルを使用する。
我々は,非剛性3次元トラッキングメッシュの新しい手法であるThinShell-SfTを提案する。
論文 参考訳(メタデータ) (2025-03-25T18:00:46Z) - SMORE: Simultaneous Map and Object REconstruction [66.66729715211642]
本稿では,LiDARから大規模都市景観を動的に再現する手法を提案する。
我々は、世界が厳格に動く物体と背景に分解される動的なシーンの構成モデルを総合的に捉え、最適化する。
論文 参考訳(メタデータ) (2024-06-19T23:53:31Z) - Neural deformation fields for template-based reconstruction of cortical
surfaces from MRI [5.4173776411667935]
本稿では,脳テンプレートからMRIスキャンの皮質表面への変形場を学習するディープメッシュ変形技術であるVox2Cortex-Flowを紹介する。
V2C-Flowは非常に高速なだけでなく、4つの皮質表面を推測するのに2秒もかからない。
V2C-Flowは精度の点で最先端の皮質表面を呈することを示す。
論文 参考訳(メタデータ) (2024-01-23T17:50:58Z) - Reconstruction of Cortical Surfaces with Spherical Topology from Infant
Brain MRI via Recurrent Deformation Learning [16.9042503785353]
MRIからの皮質表面再構成(CSR)は、脳の構造と機能を研究する鍵となる。
本稿では,数秒以内に効率よく球面マッピングを行う手法を提案する。
乳児期脳MRIに対するアプローチの有効性を実証し,CSRに重大な課題を提起した。
論文 参考訳(メタデータ) (2023-12-10T20:20:16Z) - Minimal Neural Atlas: Parameterizing Complex Surfaces with Minimal
Charts and Distortion [71.52576837870166]
我々は、新しいアトラスに基づく明示的なニューラルサーフェス表現であるミニマルニューラルアトラスを提案する。
その中核は完全学習可能なパラメトリック領域であり、パラメトリック空間の開平方上で定義された暗黙の確率的占有場によって与えられる。
我々の再構成は、トポロジーと幾何学に関する懸念の分離のため、全体的な幾何学の観点からより正確である。
論文 参考訳(メタデータ) (2022-07-29T16:55:06Z) - Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D
MRI Scans with Geometric Deep Neural Networks [3.364554138758565]
深層学習に基づくアルゴリズムであるVox2Cortexを提案する。
我々は3つの脳MRIデータセットの広範な実験で、我々のメッシュは現場の最先端の方法で再構築されたものと同じくらい正確であることを示した。
論文 参考訳(メタデータ) (2022-03-17T17:06:00Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本手法は,高分解能,高品質の全心臓再建を実現できる有望な性能を示した。
論文 参考訳(メタデータ) (2021-02-16T00:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。