FedGraM: Defending Against Untargeted Attacks in Federated Learning via Embedding Gram Matrix
- URL: http://arxiv.org/abs/2505.14024v1
- Date: Tue, 20 May 2025 07:26:54 GMT
- Title: FedGraM: Defending Against Untargeted Attacks in Federated Learning via Embedding Gram Matrix
- Authors: Di Wu, Qian Li, Heng Yang, Yong Han,
- Abstract summary: Federated Learning (FL) enables geographically distributed clients to collaboratively train machine learning models by sharing only their local models.<n>FL is vulnerable to untargeted attacks that aim to degrade the global model's performance on the underlying data distribution.<n>We propose a novel robust aggregation method, FedGraM, designed to defend against untargeted attacks in FL.
- Score: 8.745475105649192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables geographically distributed clients to collaboratively train machine learning models by sharing only their local models, ensuring data privacy. However, FL is vulnerable to untargeted attacks that aim to degrade the global model's performance on the underlying data distribution. Existing defense mechanisms attempt to improve FL's resilience against such attacks, but their effectiveness is limited in practical FL environments due to data heterogeneity. On the contrary, we aim to detect and remove the attacks to mitigate their impact. Generalization contribution plays a crucial role in distinguishing untargeted attacks. Our observations indicate that, with limited data, the divergence between embeddings representing different classes provides a better measure of generalization than direct accuracy. In light of this, we propose a novel robust aggregation method, FedGraM, designed to defend against untargeted attacks in FL. The server maintains an auxiliary dataset containing one sample per class to support aggregation. This dataset is fed to the local models to extract embeddings. Then, the server calculates the norm of the Gram Matrix of the embeddings for each local model. The norm serves as an indicator of each model's inter-class separation capability in the embedding space. FedGraM identifies and removes potentially malicious models by filtering out those with the largest norms, then averages the remaining local models to form the global model. We conduct extensive experiments to evaluate the performance of FedGraM. Our empirical results show that with limited data samples used to construct the auxiliary dataset, FedGraM achieves exceptional performance, outperforming state-of-the-art defense methods.
Related papers
- FedP3E: Privacy-Preserving Prototype Exchange for Non-IID IoT Malware Detection in Cross-Silo Federated Learning [5.7494612007431805]
We propose FedP3E, a novel FL framework that supports indirect cross-client representation sharing while maintaining data privacy.<n>We evaluate FedP3E on the N-BaIoT dataset under realistic cross-silo scenarios with varying degrees of data imbalance.
arXiv Detail & Related papers (2025-07-09T20:07:35Z) - Evaluating Query Efficiency and Accuracy of Transfer Learning-based Model Extraction Attack in Federated Learning [4.275908952997288]
Federated Learning (FL) is a collaborative learning framework designed to protect client data.<n>Despite FL's privacy-preserving goals, its distributed nature makes it particularly susceptible to model extraction attacks.<n>This paper examines the vulnerability of FL-based victim models to two types of model extraction attacks.
arXiv Detail & Related papers (2025-05-25T22:40:10Z) - FedDistill: Global Model Distillation for Local Model De-Biasing in Non-IID Federated Learning [10.641875933652647]
Federated Learning (FL) is a novel approach that allows for collaborative machine learning.
FL faces challenges due to non-uniformly distributed (non-iid) data across clients.
This paper introduces FedDistill, a framework enhancing the knowledge transfer from the global model to local models.
arXiv Detail & Related papers (2024-04-14T10:23:30Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
Federated learning is a distributed framework designed to address privacy concerns.<n>It introduces new attack surfaces, which are especially prone when data is non-Independently and Identically Distributed.<n>We present FedCC, a simple yet effective novel defense algorithm against model poisoning attacks.
arXiv Detail & Related papers (2022-12-05T01:52:32Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers.
FL is vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model.
We propose textitFL-Defender as a method to combat FL targeted attacks.
arXiv Detail & Related papers (2022-07-02T16:04:46Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.