論文の概要: Technical Report on classification of literature related to children speech disorder
- arxiv url: http://arxiv.org/abs/2505.14242v1
- Date: Tue, 20 May 2025 11:52:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.149332
- Title: Technical Report on classification of literature related to children speech disorder
- Title(参考訳): 子どもの発声障害に関する文献分類に関する技術報告
- Authors: Ziang Wang, Amir Aryani,
- Abstract要約: 本報告では、幼児期音声障害の科学的文献を体系的に分類するための自然言語処理(NLP)に基づくアプローチを提案する。
ドメイン固有キーワードを用いたPubMedデータベースから,2015年以降に公開された4,804件の関連記事の検索とフィルタリングを行った。
乳児の過活動や異常てんかん行動など,14の臨床的意義のあるクラスターが発見された。
- 参考スコア(独自算出の注目度): 2.411789610133746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This technical report presents a natural language processing (NLP)-based approach for systematically classifying scientific literature on childhood speech disorders. We retrieved and filtered 4,804 relevant articles published after 2015 from the PubMed database using domain-specific keywords. After cleaning and pre-processing the abstracts, we applied two topic modeling techniques - Latent Dirichlet Allocation (LDA) and BERTopic - to identify latent thematic structures in the corpus. Our models uncovered 14 clinically meaningful clusters, such as infantile hyperactivity and abnormal epileptic behavior. To improve relevance and precision, we incorporated a custom stop word list tailored to speech pathology. Evaluation results showed that the LDA model achieved a coherence score of 0.42 and a perplexity of -7.5, indicating strong topic coherence and predictive performance. The BERTopic model exhibited a low proportion of outlier topics (less than 20%), demonstrating its capacity to classify heterogeneous literature effectively. These results provide a foundation for automating literature reviews in speech-language pathology.
- Abstract(参考訳): 幼児期音声障害の科学的文献を体系的に分類するための自然言語処理(NLP)に基づくアプローチを提案する。
ドメイン固有キーワードを用いたPubMedデータベースから,2015年以降に公開された4,804件の関連記事の検索とフィルタリングを行った。
要約のクリーニングと前処理を行った後,2つのトピックモデリング手法,LDA (Latent Dirichlet Allocation) とBERTopic (BERTopic) を適用し,コーパス内の潜在テーマ構造を同定した。
乳児の過活動や異常てんかん行動など,14の臨床的意義のあるクラスターが発見された。
関連性の向上と精度向上のために,音声病理学に適したカスタムストップワードリストを組み込んだ。
その結果, LDAモデルはコヒーレンススコア0.42, パープレキシティ7.5を達成し, 強いトピックコヒーレンスと予測性能を示した。
BERTopicモデルでは,異種文学を効果的に分類する能力を示した。
これらの結果は,言語病理学における文献レビューの自動化の基礎となる。
関連論文リスト
- NeuroXVocal: Detection and Explanation of Alzheimer's Disease through Non-invasive Analysis of Picture-prompted Speech [4.815952991777717]
NeuroXVocalは、音声分析によってアルツハイマー病(AD)の可能性を分類し、説明する新しい二重成分システムである。
分類コンポーネント(Neuro)は、音声パターンと音声特徴をキャプチャする音響特徴、音声書き起こしから抽出したテキスト特徴、言語パターンを表す事前計算された埋め込みの3つの異なるデータストリームを処理する。
説明可能性コンポーネント(XVocal)は、大規模言語モデルとAD研究文献のドメイン固有の知識ベースを組み合わせた、検索・拡張生成(RAG)アプローチを実装している。
論文 参考訳(メタデータ) (2025-02-14T12:09:49Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Causal Micro-Narratives [62.47217054314046]
テキストから因果マイクロナラティブを分類する新しい手法を提案する。
これらの物語は、対象対象の因果関係と/または効果の文レベルの説明である。
論文 参考訳(メタデータ) (2024-10-07T17:55:10Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - Semantic Coherence Markers for the Early Diagnosis of the Alzheimer
Disease [0.0]
パープレキシティはもともと、与えられた言語モデルがテキストシーケンスを予測するのにどの程度適しているかを評価するための情報理論の尺度として考え出された。
我々は2グラムから5グラムまでのN-gramとトランスフォーマーベース言語モデルであるGPT-2を多種多様な言語モデルに適用した。
ベストパフォーマンスモデルでは、ADクラスと制御対象の両方から対象を分類する際に、完全精度とFスコア(精度/特異度とリコール/感度のそれぞれ1.00)を達成した。
論文 参考訳(メタデータ) (2023-02-02T11:40:16Z) - Speech Detection For Child-Clinician Conversations In Danish For
Low-Resource In-The-Wild Conditions: A Case Study [6.4461798613033405]
デンマーク語における幼児・子どもの会話からなるデータセット上で,事前学習した音声モデルの性能について検討した。
その結果, 既定分類閾値のモデルでは, 患者集団の子どもに悪影響を及ぼすことが判明した。
本研究は,3分間のクリニック・チャイルド・会話が最適分類閾値を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2022-04-25T10:51:54Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
本稿では,各単語の意味的意味をより正確に把握するために,文脈型単語埋め込み手法を提案する。
言語モデル(C-ELMo)とC-Flair(C-Flair)の2つの深い文脈型言語モデル(C-ELMo)を事前訓練する。
明示的な実験により、静的単語埋め込みとドメインジェネリック言語モデルの両方と比較して、我々のモデルは劇的に改善されている。
論文 参考訳(メタデータ) (2021-06-23T18:12:58Z) - Morphologically Aware Word-Level Translation [82.59379608647147]
本稿では,バイリンガルレキシコン誘導のための新しい形態素認識確率モデルを提案する。
我々のモデルは、レキセメが意味の鍵となる語彙単位であるという基本的な言語的直観を生かしている。
論文 参考訳(メタデータ) (2020-11-15T17:54:49Z) - Artificial Intelligence, speech and language processing approaches to
monitoring Alzheimer's Disease: a systematic review [5.635607414700482]
本稿では,アルツハイマー病の認知機能低下を予測するための人工知能,音声,言語処理の利用に関する現在の知見を要約する。
筆者らは2000年から2019年にかけて, PROSPEROに登録されたオリジナルの研究の体系的レビューを行った。
論文 参考訳(メタデータ) (2020-10-12T21:43:04Z) - COVID-19 therapy target discovery with context-aware literature mining [5.839799877302573]
本稿では,エンティティ間の関係を近似することで,経験的表現データの文脈化を行うシステムを提案する。
トランスファーラーニングによりより大きな科学的文脈を活用するために,新しい埋め込み生成手法を提案する。
論文 参考訳(メタデータ) (2020-07-30T18:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。