論文の概要: Cost-Augmented Monte Carlo Tree Search for LLM-Assisted Planning
- arxiv url: http://arxiv.org/abs/2505.14656v1
- Date: Tue, 20 May 2025 17:43:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.653463
- Title: Cost-Augmented Monte Carlo Tree Search for LLM-Assisted Planning
- Title(参考訳): LLM支援計画のためのコスト増大モンテカルロ木探索
- Authors: Zihao Zhang, Fei Liu,
- Abstract要約: Cost-Augmented Monte Carlo Tree Search (CATS)は、LCM誘導計画に明確なコスト認識をもたらす新しいアプローチである。
GPT-4.1、Claude-3.7-Sonnet、DeepSeek-R1などの上位LCMをCATSプランナに対してベンチマークし、コスト感受性のシナリオで性能を評価する。
- 参考スコア(独自算出の注目度): 9.475296641135289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While LLMs excel at open-ended reasoning, they often struggle with cost-sensitive planning, either treating all actions as having equal cost or failing to stay within strict budgets. In this paper, we introduce Cost-Augmented Monte Carlo Tree Search (CATS), a novel approach that brings explicit cost-awareness into LLM-guided planning. Tight cost constraints push the planner to quickly identify infeasible solutions, while looser constraints encourage optimization for minimal cost. We benchmark top LLMs such as GPT-4.1, Claude-3.7-Sonnet, and DeepSeek-R1, against our CATS planner to evaluate their performance in cost-sensitive scenarios. Our experiments suggest that raw LLMs such as GPT-4.1 often falter under tight budgets, whereas CATS consistently delivers strong performance, achieving higher task success rates and better cost efficiency. CATS provides an effective solution for budget-aware decision-making by combining the reasoning power of LLMs with structured search.
- Abstract(参考訳): LLMはオープンエンドの推論において優れているが、コストに敏感な計画に苦しむことが多く、全てのアクションを同じコストで扱うか、厳格な予算内に留まらないかのどちらかである。
本稿では,LCM誘導計画に明確なコスト認識をもたらす新しいアプローチであるCATS(Cost-Augmented Monte Carlo Tree Search)を紹介する。
厳格なコスト制約は、プランナーに迅速に実現不可能なソリューションを特定するように促す一方で、よりゆるやかな制約は最小のコストで最適化を促進する。
GPT-4.1、Claude-3.7-Sonnet、DeepSeek-R1などの上位LCMをCATSプランナに対してベンチマークし、コスト感受性のシナリオで性能を評価する。
実験の結果, GPT-4.1 のような生の LLM は予算が厳しい場合が多いのに対して, CATS は高いタスク成功率, コスト効率の向上など, 常に高い性能を実現していることがわかった。
CATS は LLM の推論能力と構造化探索を組み合わせることで, 予算を考慮した意思決定に有効なソリューションを提供する。
関連論文リスト
- Large Reasoning Models in Agent Scenarios: Exploring the Necessity of Reasoning Capabilities [74.35956310688164]
ツール利用,計画設計,問題解決の9つのタスクを含むLaRMAフレームワークを提案する。
LRMは計画設計のような推論集約的なタスクにおいてLLMを超越し、反復反射を優れた結果に活用する、という4つの研究課題に対処する。
LRMの強化された推論は、過剰思考や事実を無視した傾向を含む高い計算コスト、長い処理、行動上の問題を引き起こす。
論文 参考訳(メタデータ) (2025-03-14T04:34:31Z) - Smart Routing: Cost-Effective Multi-LLM Serving for Multi-Core AIOS [31.60019342381251]
既存のスケジューリングフレームワークは主にレイテンシの最適化をターゲットとしている。
本稿では,マルチLLMサービスのための高効率能率協調スケジューリングフレームワークECCOSを提案する。
論文 参考訳(メタデータ) (2025-02-27T22:35:31Z) - MixLLM: Dynamic Routing in Mixed Large Language Models [57.309520357563215]
大規模言語モデル(LLM)は、最近、人工知能の可能性を秘めている。
問合せ-LLM代入のための動的コンテキスト帯域ベースのルーティングシステムであるMixLLMを開発した。
論文 参考訳(メタデータ) (2025-02-09T02:26:15Z) - Control Large Language Models via Divide and Conquer [94.48784966256463]
本稿では,Lexically Constrained Generation(LCG)に着目し,大規模言語モデル(LLM)のプロンプトベース制御による制御可能生成について検討する。
我々は,レキシカル制約を満たすためのLLMの性能を,プロンプトベース制御により評価し,下流アプリケーションでの有効性を検証した。
論文 参考訳(メタデータ) (2024-10-06T21:20:06Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
決定は、より優れた性能を持つ大型LCMを使うか、より少ないコストで使用するかに重点を置いている。
我々は,LLMの世代間不確実性のみを意思決定基準として,より単純な解を提案する。
実験の結果、この単純な解はコストと性能を最適にバランスさせ、27の試験装置中25の既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-03T14:38:59Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクの性能を大幅に向上させた。
高性能LLMの配備は、主にモデル性能の向上を目的としたパラメータの増大により、かなりのコストがかかる。
SMARTは,NLPタスクの推論コストを最小限に抑えつつ,十分な結果品質を確保するために設計された新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T17:45:47Z) - Switching the Loss Reduces the Cost in Batch (Offline) Reinforcement Learning [57.154674117714265]
本稿では,FQI-log を用いた準最適政策の学習に必要なサンプル数と,最適政策の累積コストについて述べる。
我々は,FQI-logが目標を確実に達成する問題に対して,2乗損失を訓練したFQIよりも少ないサンプルを用いていることを実証的に検証した。
論文 参考訳(メタデータ) (2024-03-08T15:30:58Z) - Large Language Model Cascades with Mixture of Thoughts Representations
for Cost-efficient Reasoning [19.472937476936636]
大きな言語モデル(LLM)は、様々なタスクで顕著なパフォーマンスを示していますが、この強力なパフォーマンスは、しばしば有料のAPIサービスを使用するコストが高くなります。
本稿では, LLM のコスト削減を目的とした LLM カスケードの構築について検討する。
提案するカスケードは,より強力なLCMのみを使用すれば性能が向上するが,コストの40%しか必要としない。
論文 参考訳(メタデータ) (2023-10-04T18:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。