論文の概要: Cascaded Diffusion Models for Neural Motion Planning
- arxiv url: http://arxiv.org/abs/2505.15157v1
- Date: Wed, 21 May 2025 06:21:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.012093
- Title: Cascaded Diffusion Models for Neural Motion Planning
- Title(参考訳): 神経運動計画のためのカスケード拡散モデル
- Authors: Mohit Sharma, Adam Fishman, Vikash Kumar, Chris Paxton, Oliver Kroemer,
- Abstract要約: 本研究では,拡散政策を用いたグローバルな動き計画学習手法を提案する。
我々のアプローチは、グローバルな予測と局所的な洗練を統一するカスケード階層モデルを用いる。
ナビゲーションや操作を含む複数の領域における課題タスクにおいて,本手法は(5%)優れていた。
- 参考スコア(独自算出の注目度): 36.53334347874921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots in the real world need to perceive and move to goals in complex environments without collisions. Avoiding collisions is especially difficult when relying on sensor perception and when goals are among clutter. Diffusion policies and other generative models have shown strong performance in solving local planning problems, but often struggle at avoiding all of the subtle constraint violations that characterize truly challenging global motion planning problems. In this work, we propose an approach for learning global motion planning using diffusion policies, allowing the robot to generate full trajectories through complex scenes and reasoning about multiple obstacles along the path. Our approach uses cascaded hierarchical models which unify global prediction and local refinement together with online plan repair to ensure the trajectories are collision free. Our method outperforms (by ~5%) a wide variety of baselines on challenging tasks in multiple domains including navigation and manipulation.
- Abstract(参考訳): 現実世界のロボットは、衝突なしに複雑な環境で目標を知覚し、移動する必要がある。
衝突を避けることは、センサーの知覚に頼り、目標が散らかっているときに特に困難である。
拡散政策やその他の生成モデルは、局所的な計画問題の解決において強い性能を示してきたが、真に困難なグローバルな運動計画問題を特徴づける微妙な制約違反を避けるためにしばしば苦労している。
本研究では,拡散ポリシを用いたグローバルな動き計画学習手法を提案する。
提案手法では,グローバルな予測と局所的な改善を統一するカスケード階層モデルとオンライン計画修復を併用して,軌道が衝突しないよう保証する。
本手法は,ナビゲーションや操作を含む複数の領域における課題タスクに対して,多種多様なベースラインを(約5%)上回る性能を示す。
関連論文リスト
- Curiosity-Driven Imagination: Discovering Plan Operators and Learning Associated Policies for Open-World Adaptation [7.406934849952094]
動的で不確実な環境に素早く適応することは、ロボット工学における大きな課題である。
従来のタスク・アンド・モーション・プランニングアプローチは、予期せぬ変化に対処し、適応するときにデータ非効率であり、学習中に世界モデルを活用するのに苦労する。
我々はこの問題を、2つのモデルを統合するハイブリッド計画学習システムで解決する: 遷移を学習し、固有の好奇性モジュール(ICM)による探索を駆動する低レベルニューラルネットワークベースモデル。
シーケンシャル・ノベルティ・インジェクションを用いたロボット操作領域における評価は、我々のアプローチがより高速に収束し、最先端のハイブリッド手法より優れていることを示す。
論文 参考訳(メタデータ) (2025-03-06T20:02:26Z) - Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization [0.0]
障害物の存在下でのマルチエージェントシステムの動的運動計画は普遍的で未解決な問題である。
本稿では,学習に基づく動的ナビゲーションモデルを提案し,シンプルなRobosoccer Gameの概念を用いて,シンプルな環境で動作するモデルを示す。
論文 参考訳(メタデータ) (2025-02-08T11:13:07Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(SMD)は、制約付き最適化を拡散サンプリングプロセスに統合し、運動学的に実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
この研究は、長期水平予測、エラー蓄積、およびsim-to-real転送の課題に対処することで、モデルに基づく強化学習を前進させる。
スケーラブルでロバストなフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題である。
連続空間におけるMAPFの拡散モデルと制約付き最適化を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-23T21:27:19Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - LDP: A Local Diffusion Planner for Efficient Robot Navigation and Collision Avoidance [16.81917489473445]
条件拡散モデルは,ロボットポリシーを学習するための効率的なツールとして実証されてきた。
ダイナミックな障害物と迷路のような構造を特徴とする現実シナリオの複雑な性質は、ロボットの局所的なナビゲーション決定の複雑さを浮き彫りにする。
論文 参考訳(メタデータ) (2024-07-02T04:53:35Z) - Diffusion-Reinforcement Learning Hierarchical Motion Planning in Multi-agent Adversarial Games [6.532258098619471]
環境データに応答するグローバルパスを計画するために,高レベル拡散モデルを統合する階層型アーキテクチャを提案する。
提案手法は,検出率と目標到達率において77.18%,47.38%のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-03-16T03:53:55Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Mobile Robot Path Planning in Dynamic Environments through Globally
Guided Reinforcement Learning [12.813442161633116]
本稿では,多ボット計画問題の解決を目的として,グローバルガイド型学習強化手法(G2RL)を提案する。
G2RLは任意の環境に一般化する新しい経路報酬構造を組み込んでいる。
提案手法は,異なるマップタイプ,障害物密度,ロボット数にまたがって評価する。
論文 参考訳(メタデータ) (2020-05-11T20:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。