Prethermalization, shadowing breakdown, and the absence of Trotterization transition in quantum circuits
- URL: http://arxiv.org/abs/2505.15521v1
- Date: Wed, 21 May 2025 13:46:39 GMT
- Title: Prethermalization, shadowing breakdown, and the absence of Trotterization transition in quantum circuits
- Authors: Marko Znidaric,
- Abstract summary: We show that the effective energy is more stable than suggested by Trotter errors.<n>Contrary to previous claims, there is no Trotterization transition in non-integrable many-body quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of premier utilities of present day noisy quantum computers is simulation of many-body quantum systems. We study how long in time is such a discrete-time simulation representative of a continuous time Hamiltonian evolution, namely, a finite time-step introduces so-called Trotterization errors. We show that the truncated operator propagator (Ruelle-Pollicott resonances) is a powerful tool to that end, as well as to study prethermalization and discrete time crystals, including finding those phenomena at large gate duration, and can be used to calculate diffusion constant. We show that the effective energy is more stable than suggested by Trotter errors -- a manifestation of prethermalization -- while all other observables are not. Even such the most stable observable though deteriorates in the thermodynamic limit. Different than in classical systems with the strongest chaos, where the faithfulness time (the shadowing time) can be infinite, in quantum many-body chaotic systems it is finite. A corollary of our results is also that, opposite to previous claims, there is no Trotterization transition in non-integrable many-body quantum systems.
Related papers
- Quantum Thermodynamics on a limit cycle [0.0]
We consider a periodic quantum clock based on cooperative resonance fluorescence at zero temperature.<n>We show that the quantum phase diffusion on the limit cycle leads to fluctuations in the period.<n>As energy dissipation increases, the clock quality improves, fully validating, in a quantum system.
arXiv Detail & Related papers (2025-03-15T12:55:57Z) - Quantum simulation for time-dependent Hamiltonians -- with applications
to non-autonomous ordinary and partial differential equations [31.223649540164928]
We propose an alternative formalism that turns any non-autonomous unitary dynamical system into an autonomous unitary system.
This makes the simulation with time-dependent Hamiltonians not much more difficult than that of time-independent Hamiltonians.
We show how our new quantum protocol for time-dependent Hamiltonians can be performed in a resource-efficient way and without measurements.
arXiv Detail & Related papers (2023-12-05T14:59:23Z) - Chaotic fluctuations in a universal set of transmon qubit gates [37.69303106863453]
Transmon qubits arise from the quantization of nonlinear resonators.
Fast entangling gates, operating at speeds close to the so-called quantum speed limit, contain transient regimes where the dynamics indeed becomes partially chaotic for just two transmons.
arXiv Detail & Related papers (2023-11-24T16:30:56Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Quantum metrology with boundary time crystals [0.0]
We show that a transition from a symmetry unbroken into a boundary time crystal phase reveals quantum-enhanced sensitivity quantified through quantum Fisher information.
Our scheme is indeed a demonstration of harnessing decoherence for achieving quantum-enhanced sensitivity.
arXiv Detail & Related papers (2023-01-05T15:15:38Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Anomalous Random Multipolar Driven Insulators [0.0]
We show that even in the absence of time translation symmetry, nonequilibrium topological phases of matter can exist in aperiodically driven systems.
We first demonstrate the existence of longlived prethermal Anderson localization in two dimensions under random multipolar driving.
arXiv Detail & Related papers (2022-01-14T11:55:49Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Quantum time crystals with programmable disorder in higher dimensions [0.0]
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.
They are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics.
arXiv Detail & Related papers (2020-04-15T18:02:07Z) - Time-dependence in non-Hermitian quantum systems [0.0]
We present a coherent and consistent framework for explicit time-dependence in non-Hermitian quantum mechanics.
We create an elegant framework for Darboux and Darboux/Crum for time-dependent non-Hermitian Hamiltonians.
arXiv Detail & Related papers (2020-02-05T20:19:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.