Measurement-free quantum error correction optimized for biased noise
- URL: http://arxiv.org/abs/2505.15669v1
- Date: Wed, 21 May 2025 15:46:13 GMT
- Title: Measurement-free quantum error correction optimized for biased noise
- Authors: Katharina Brechtelsbauer, Friederike Butt, David F. Locher, Santiago Higuera Quintero, Sebastian Weber, Markus Müller, Hans Peter Büchler,
- Abstract summary: We derive measurement-free protocols for quantum error correction and the implementation of a universal gate set optimized for an error model that is noise biased.<n>The noise bias is adapted for neutral atom platforms, where two- and multi-qubit gates are realized with Rydberg interactions.
- Score: 1.2161145818221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we derive optimized measurement-free protocols for quantum error correction and the implementation of a universal gate set optimized for an error model that is noise biased . The noise bias is adapted for neutral atom platforms, where two- and multi-qubit gates are realized with Rydberg interactions and are thus expected to be the dominating source of noise. Careful design of the gates allows to further reduce the noise model to Pauli-Z errors. In addition, the presented circuits are robust to arbitrary single-qubit gate errors, and we demonstrate that the break-even point can be significantly improved compared to fully fault-tolerant measurement-free schemes. The obtained logical qubits with their suppressed error rates on logical gate operations can then be used as building blocks in a first step of error correction in order to push the effective error rates below the threshold of a fully fault-tolerant and scalable quantum error correction scheme.
Related papers
- Error budget of parametric resonance entangling gate with a tunable coupler [0.0]
We analyze the experimental error budget of parametric resonance gates in a tunable coupler architecture.
Incoherent errors, mainly arising from qubit relaxation and dephasing due to white noise, limit the fidelity of the two-qubit gates.
Leakage to noncomputational states is the second largest contributor to the two-qubit gates infidelity.
arXiv Detail & Related papers (2024-02-06T18:46:27Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Segmented Composite Design of Robust Single-Qubit Quantum Gates [0.9487097819140653]
We introduce an error mitigation scheme for robust single-qubit unitary gates based on composite segmented design.
We show that the 3-segmented composite design for the fundamental single-qubits unitary operations reduces the error by an order of magnitude for a realistic distribution of errors.
arXiv Detail & Related papers (2022-12-31T17:00:24Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Benchmarking quantum logic operations relative to thresholds for fault
tolerance [0.02171671840172762]
We use gate set tomography to perform precision characterization of a set of two-qubit logic gates to study RC on a superconducting quantum processor.
We show that the average and worst-case error rates are equal for randomly compiled gates, and measure a maximum worst-case error of 0.0197(3) for our gate set.
arXiv Detail & Related papers (2022-07-18T17:41:58Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Fundamental limits of quantum error mitigation [0.0]
We show how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead.
Our results provide a means to identify when a given quantum error-mitigation strategy is optimal and when there is potential room for improvement.
arXiv Detail & Related papers (2021-09-09T17:56:14Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.