論文の概要: KoBALT: Korean Benchmark For Advanced Linguistic Tasks
- arxiv url: http://arxiv.org/abs/2505.16125v1
- Date: Thu, 22 May 2025 02:03:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.971907
- Title: KoBALT: Korean Benchmark For Advanced Linguistic Tasks
- Title(参考訳): KoBALT:韓国語による高度な言語課題のベンチマーク
- Authors: Hyopil Shin, Sangah Lee, Dongjun Jang, Wooseok Song, Jaeyoon Kim, Chaeyoung Oh, Hyemi Jo, Youngchae Ahn, Sihyun Oh, Hyohyeong Chang, Sunkyoung Kim, Jinsik Lee,
- Abstract要約: KoBALT (Korean Benchmark for Advanced Linguistic Tasks) は700の質問からなる言語的に動機付けられたベンチマークである。
韓国語における大規模言語モデル(LLM)の評価を推し進めるために設計された。
韓国の標準コーパスとn-gramの重複が最小限に抑えられた専門家による言語的動機付けの質問スイートを導入している。
- 参考スコア(独自算出の注目度): 0.6971903955510721
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce KoBALT (Korean Benchmark for Advanced Linguistic Tasks), a comprehensive linguistically-motivated benchmark comprising 700 multiple-choice questions spanning 24 phenomena across five linguistic domains: syntax, semantics, pragmatics, phonetics/phonology, and morphology. KoBALT is designed to advance the evaluation of large language models (LLMs) in Korean, a morphologically rich language, by addressing the limitations of conventional benchmarks that often lack linguistic depth and typological grounding. It introduces a suite of expert-curated, linguistically motivated questions with minimal n-gram overlap with standard Korean corpora, substantially mitigating the risk of data contamination and allowing a more robust assessment of true language understanding. Our evaluation of 20 contemporary LLMs reveals significant performance disparities, with the highest-performing model achieving 61\% general accuracy but showing substantial variation across linguistic domains - from stronger performance in semantics (66\%) to considerable weaknesses in phonology (31\%) and morphology (36\%). Through human preference evaluation with 95 annotators, we demonstrate a strong correlation between KoBALT scores and human judgments, validating our benchmark's effectiveness as a discriminative measure of Korean language understanding. KoBALT addresses critical gaps in linguistic evaluation for typologically diverse languages and provides a robust framework for assessing genuine linguistic competence in Korean language models.
- Abstract(参考訳): KoBALT (Korean Benchmark for Advanced Linguistic Tasks) は,文法,意味論,プラグマティクス,音韻/音声学,形態学という5つの言語領域にまたがる24の現象にまたがる700の多重選択質問を包括的言語学的に動機づけたベンチマークである。
KoBALTは、しばしば言語深度と類型的接地を欠く従来のベンチマークの限界に対処することによって、形態的に豊かな言語である韓国語における大きな言語モデル(LLM)の評価を前進させるように設計されている。
韓国の標準コーパスとn-gramの重複が最小限に抑えられ、データ汚染のリスクを大幅に軽減し、真の言語理解をより堅牢に評価できる専門家による言語的動機付けの質問スイートを導入する。
20個の現代LLMの評価では, 性能の相違が顕著であり, 平均精度は61 %であったが, 意味学の強い性能(66 %)から音韻学と形態学のかなりの弱点(36 %)まで, 言語領域に有意な差異が認められた。
95のアノテータを用いた人選好評価を通じて,KoBALTスコアと人選判断との間に強い相関関係を示し,韓国語理解の判別尺度としてのベンチマークの有効性を検証した。
KoBALTは、タイプ的多様言語に対する言語評価において重要なギャップに対処し、韓国語モデルにおける真の言語能力を評価するための堅牢な枠組みを提供する。
関連論文リスト
- MMLU-ProX: A Multilingual Benchmark for Advanced Large Language Model Evaluation [60.52580061637301]
MMLU-ProXは、言語毎に約11,829の質問を持つ、13の型的多様言語をカバーする包括的なベンチマークである。
5ショットチェーン(CoT)とゼロショットプロンプト戦略を用いて25の最先端の大規模言語モデル(LLM)を評価し,言語的・文化的境界を越えてその性能を解析した。
我々の実験は、ハイリソース言語から低リソース言語への一貫したパフォーマンス劣化を示し、最高のモデルは英語で70%以上の精度を達成しているが、Swahiliのような言語では40%程度にまで低下している。
論文 参考訳(メタデータ) (2025-03-13T15:59:20Z) - LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low-Resource and Extinct Languages [8.754506364968394]
LingOlyベンチマークは、大規模言語モデルにおける高度な推論能力のための新しいベンチマークである。
非常に低リソースまたは絶滅した言語における言語パターンの文脈内同定と一般化の能力を評価する。
直接精度と非文脈ベースラインとの比較により,暗記を暗記する性能を評価する。
論文 参考訳(メタデータ) (2024-06-10T11:50:29Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
言語モデル(LM)の言語能力を評価するための新しいベンチマークであるHolmesを紹介する。
我々は、計算に基づく探索を用いて、異なる言語現象に関するLMの内部表現を調べる。
その結果,近年,他の認知能力からLMの言語能力を引き離す声が上がっている。
論文 参考訳(メタデータ) (2024-04-29T17:58:36Z) - Pragmatic Competence Evaluation of Large Language Models for the Korean Language [0.6757476692230009]
本研究では,Large Language Models (LLMs) が,特に韓国語における実践的視点から,文脈依存表現をいかによく理解しているかを評価する。
自動評価にはMultiple-Choice Questions(MCQ)と、専門家によるOEQ(Open-Ended Questions)の両方を用いる。
論文 参考訳(メタデータ) (2024-03-19T12:21:20Z) - HAE-RAE Bench: Evaluation of Korean Knowledge in Language Models [0.0]
HAE-RAE Benchは,韓国の文化的・文脈的深度に欠けるモデルに挑戦するためのデータセットである。
このデータセットは、語彙、歴史、一般的な知識、読み理解の4つの領域にまたがる6つの下流タスクを含んでいる。
論文 参考訳(メタデータ) (2023-09-06T04:38:16Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
専門家が注釈を付けた言語学的に重要なエンティティ(CLSE)のコーパスをリリースする。
CLSEは74種類のセマンティックタイプをカバーし、航空券売機からビデオゲームまで様々なアプリケーションをサポートする。
言語的に代表されるNLG評価ベンチマークを,フランス語,マラティー語,ロシア語の3言語で作成する。
論文 参考訳(メタデータ) (2022-11-04T12:56:12Z) - KOBEST: Korean Balanced Evaluation of Significant Tasks [3.664687661363732]
自然言語処理(NLP)分野の進歩を加速させる上で,十分に構成されたベンチマークが重要な役割を担っている。
我々は,韓国語下流5つのタスクからなる重要なタスク(KoBEST)について,韓国語バランス評価という新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2022-04-09T20:13:51Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。