論文の概要: Pragmatic Competence Evaluation of Large Language Models for the Korean Language
- arxiv url: http://arxiv.org/abs/2403.12675v2
- Date: Thu, 17 Oct 2024 08:14:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:16:38.326057
- Title: Pragmatic Competence Evaluation of Large Language Models for the Korean Language
- Title(参考訳): 韓国語大言語モデルの実用的能力評価
- Authors: Dojun Park, Jiwoo Lee, Hyeyun Jeong, Seohyun Park, Sungeun Lee,
- Abstract要約: 本研究では,Large Language Models (LLMs) が,特に韓国語における実践的視点から,文脈依存表現をいかによく理解しているかを評価する。
自動評価にはMultiple-Choice Questions(MCQ)と、専門家によるOEQ(Open-Ended Questions)の両方を用いる。
- 参考スコア(独自算出の注目度): 0.6757476692230009
- License:
- Abstract: Benchmarks play a significant role in the current evaluation of Large Language Models (LLMs), yet they often overlook the models' abilities to capture the nuances of human language, primarily focusing on evaluating embedded knowledge and technical skills. To address this gap, our study evaluates how well LLMs understand context-dependent expressions from a pragmatic standpoint, specifically in Korean. We use both Multiple-Choice Questions (MCQs) for automatic evaluation and Open-Ended Questions (OEQs) assessed by human experts. Our results show that GPT-4 leads with scores of 81.11 in MCQs and 85.69 in OEQs, closely followed by HyperCLOVA X. Additionally, while few-shot learning generally improves performance, Chain-of-Thought (CoT) prompting tends to encourage literal interpretations, which may limit effective pragmatic inference. Our findings highlight the need for LLMs to better understand and generate language that reflects human communicative norms.
- Abstract(参考訳): ベンチマークは、現在のLLM(Large Language Models)の評価において重要な役割を果たすが、主に組み込み知識と技術スキルの評価に焦点を当てた、人間の言語のニュアンスを捉えるモデルの能力を見落としていることが多い。
このギャップに対処するため,本研究では,LLMが文脈依存表現を,特に韓国語でいかに理解するかを評価する。
自動評価にはMultiple-Choice Questions(MCQ)と、専門家によるOEQ(Open-Ended Questions)の両方を用いる。
以上の結果から,GPT-4はMCQの81.11点,OEQの85.69点,HyperCLOVA Xがそれに近づいた。
人間のコミュニケーション規範を反映した言語をよりよく理解し、生成するLLMの必要性を強調した。
関連論文リスト
- ProverbEval: Exploring LLM Evaluation Challenges for Low-resource Language Understanding [15.93642619347214]
ProverbEvalは,証明に基づく低リソース言語の評価ベンチマークである。
様々なLCMをベンチマークし、ベンチマークプロセスにおける変数を生成する要因を探索する。
我々は、選択の順序、プロンプト言語の選択、タスクの可変性、生成タスクに特別な注意を払わなければならないと論じている。
論文 参考訳(メタデータ) (2024-11-07T06:34:48Z) - MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models [3.961168847961322]
大型言語モデル(LLM)は、人間の好みや判断のプロキシとして機能するタスクの評価器として一般的に用いられる。
既存のベンチマークは主に英語に重点を置いており、非英語の文脈における評価者としてのLLMの有効性についての限られた洞察を提供している。
MM-Evalは6つのカテゴリにまたがる18言語をカバーする多言語メタ評価ベンチマークである。
論文 参考訳(メタデータ) (2024-10-23T06:04:55Z) - LLM-as-a-Judge & Reward Model: What They Can and Cannot Do [2.2469442203227863]
自動評価器の総合的な分析を行い,その挙動に関するいくつかの重要な知見を報告する。
英語の評価能力は言語固有の評価能力に大きく影響し,英語で訓練された評価者が他の言語に容易にスキルを伝達できることがわかった。
我々は、現在最先端の評価者が、英語と韓国語の両方において、複雑な推論問題の評価や生成の限界について、挑戦的なプロンプトに苦しむことに気付きました。
論文 参考訳(メタデータ) (2024-09-17T14:40:02Z) - How Does Quantization Affect Multilingual LLMs? [50.867324914368524]
量子化技術は、大規模な言語モデルの推論速度と展開を改善するために広く使われている。
量子化多言語LLMの徹底的な分析を行い、言語間の性能と様々なスケールに焦点をあてる。
論文 参考訳(メタデータ) (2024-07-03T15:39:40Z) - MultiPragEval: Multilingual Pragmatic Evaluation of Large Language Models [0.5822010906632046]
本研究では,Large Language Models (LLMs)の最初の実用的評価であるMultiPragEvalを紹介する。
Griceの協力原理に従って分類された1200の質問ユニットを補完するMultiPragEvalは、LLMの文脈認識とインプリケートされた意味を推測する能力の詳細な評価を可能にする。
以上の結果から,Claude3-Opusはすべてのテスト言語で他のモデルよりも優れており,この分野における最先端の確立が期待できる。
論文 参考訳(メタデータ) (2024-06-11T21:46:03Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large
Language Models [59.54423478596468]
OMGEvalは、オープンソースの多言語生成テストセットであり、異なる言語におけるLLMの能力を評価することができる。
各言語について、OMGEvalは804のオープンエンド質問を提供し、LLMの重要な機能を幅広くカバーしている。
具体的には、OMGEvalの現在のバージョンには5つの言語(Zh, Ru, Fr, Es, Ar)が含まれている。
論文 参考訳(メタデータ) (2024-02-21T04:42:41Z) - LLaMA Beyond English: An Empirical Study on Language Capability Transfer [49.298360366468934]
我々は、言語生成の能力と指示を英語以外の言語に効果的に伝達する方法に焦点をあてる。
本稿では,語彙拡張や事前学習,トランスファーに対する指導指導などの重要な要因が与える影響について分析する。
C-Eval、MMLU、AGI-Eval、GAokao-Benchの4つの広く使われている標準テストベンチマークを採用しています。
論文 参考訳(メタデータ) (2024-01-02T06:29:02Z) - Are Large Language Model-based Evaluators the Solution to Scaling Up
Multilingual Evaluation? [20.476500441734427]
大規模言語モデル(LLM)は様々な自然言語処理(NLP)タスクに優れる。
彼らの評価、特に上位20ドルを超える言語では、既存のベンチマークとメトリクスの制限のため、依然として不十分である。
論文 参考訳(メタデータ) (2023-09-14T06:41:58Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
本稿では, 自然科学, 社会科学, 工学, 人文科学など, さまざまな分野をカバーする総合的な中国のベンチマークを紹介する。
CMMLUは、中国語の文脈における大きな言語モデルの知識と推論能力の評価におけるギャップを埋める。
論文 参考訳(メタデータ) (2023-06-15T15:49:51Z) - Evaluating the Performance of Large Language Models on GAOKAO Benchmark [53.663757126289795]
本稿では,中国のガオカオ検定の質問をサンプルとして用いた直感的なベンチマークであるガオカオベンチについて紹介する。
人間の評価により, GPT-4, ChatGPT, ERNIE-Botを含むLLMの変換総得点を得た。
また、LLMを用いて主観的質問を格付けし、モデルスコアが人間のスコアと適度な一貫性を達成することを確認する。
論文 参考訳(メタデータ) (2023-05-21T14:39:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。