HiMATE: A Hierarchical Multi-Agent Framework for Machine Translation Evaluation
- URL: http://arxiv.org/abs/2505.16281v1
- Date: Thu, 22 May 2025 06:24:08 GMT
- Title: HiMATE: A Hierarchical Multi-Agent Framework for Machine Translation Evaluation
- Authors: Shijie Zhang, Renhao Li, Songsheng Wang, Philipp Koehn, Min Yang, Derek F. Wong,
- Abstract summary: HiMATE is a Hierarchical Multi-Agent Framework for Machine Translation Evaluation.<n>We develop a hierarchical multi-agent system grounded in the MQM error typology, enabling granular evaluation of subtype errors.<n> Empirically, HiMATE outperforms competitive baselines across different datasets in conducting human-aligned evaluations.
- Score: 38.67031685302134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of Large Language Models (LLMs) enables flexible and interpretable automatic evaluations. In the field of machine translation evaluation, utilizing LLMs with translation error annotations based on Multidimensional Quality Metrics (MQM) yields more human-aligned judgments. However, current LLM-based evaluation methods still face challenges in accurately identifying error spans and assessing their severity. In this paper, we propose HiMATE, a Hierarchical Multi-Agent Framework for Machine Translation Evaluation. We argue that existing approaches inadequately exploit the fine-grained structural and semantic information within the MQM hierarchy. To address this, we develop a hierarchical multi-agent system grounded in the MQM error typology, enabling granular evaluation of subtype errors. Two key strategies are incorporated to further mitigate systemic hallucinations within the framework: the utilization of the model's self-reflection capability and the facilitation of agent discussion involving asymmetric information. Empirically, HiMATE outperforms competitive baselines across different datasets in conducting human-aligned evaluations. Further analyses underscore its significant advantage in error span detection and severity assessment, achieving an average F1-score improvement of 89% over the best-performing baseline. We make our code and data publicly available at https://anonymous.4open.science/r/HiMATE-Anony.
Related papers
- MAATS: A Multi-Agent Automated Translation System Based on MQM Evaluation [9.331779458661831]
MAATS employs multiple specialized AI agents, each focused on a distinct MQM category.<n>It excels particularly in semantic accuracy, locale adaptation, and linguistically distant language pairs.<n>By aligning modular agent roles with interpretable MQM dimensions, MAATS narrows the gap between black-box LLMs and human translation.
arXiv Detail & Related papers (2025-05-20T19:29:05Z) - M-MAD: Multidimensional Multi-Agent Debate for Advanced Machine Translation Evaluation [12.042804590050089]
Multidimensional Multi-Agent Debate (M-MAD) is a systematic LLM-based multi-agent framework for advanced machine translation evaluation.<n>Our findings demonstrate that M-MAD achieves significant advancements by (1) decoupling MQM criteria into distinct evaluation dimensions for fine-grained assessments.<n> Comprehensive experiments show that M-MAD not only outperforms all existing LLM-as-a-judge methods but also competes with state-of-the-art reference-based automatic metrics.
arXiv Detail & Related papers (2024-12-28T12:11:28Z) - Are Large Language Models State-of-the-art Quality Estimators for Machine Translation of User-generated Content? [6.213698466889738]
This paper investigates whether large language models (LLMs) are state-of-the-art quality estimators for machine translation of user-generated content (UGC)
We employ an existing emotion-related dataset with human-annotated errors and calculate quality evaluation scores based on the Multi-dimensional Quality Metrics.
arXiv Detail & Related papers (2024-10-08T20:16:59Z) - MQM-APE: Toward High-Quality Error Annotation Predictors with Automatic Post-Editing in LLM Translation Evaluators [53.91199933655421]
Large Language Models (LLMs) have shown significant potential as judges for Machine Translation (MT) quality assessment.<n>We introduce a universal and training-free framework, $textbfMQM-APE, based on the idea of filtering out non-impactful errors.<n>Experiments show that our approach consistently improves both the reliability and quality of error spans against GEMBA-MQM.
arXiv Detail & Related papers (2024-09-22T06:43:40Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Dynamic Evaluation of Large Language Models by Meta Probing Agents [44.20074234421295]
We propose meta probing agents (MPA) to evaluate large language models (LLMs)
MPA is the key component of DyVal 2, which naturally extends the previous DyValcitepzhu2023dyval.
MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory.
arXiv Detail & Related papers (2024-02-21T06:46:34Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQM is a prompting technique which asks large language models to identify and categorize errors in translations.
We study the impact of labeled data through in-context learning and finetuning.
We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores.
arXiv Detail & Related papers (2023-08-14T17:17:21Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Error Analysis Prompting Enables Human-Like Translation Evaluation in Large Language Models [57.80514758695275]
Using large language models (LLMs) for assessing the quality of machine translation (MT) achieves state-of-the-art performance at the system level.
We propose a new prompting method called textbftextttError Analysis Prompting (EAPrompt)
This technique emulates the commonly accepted human evaluation framework - Multidimensional Quality Metrics (MQM) and textitproduces explainable and reliable MT evaluations at both the system and segment level.
arXiv Detail & Related papers (2023-03-24T05:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.