Deep Reinforcement Learning for Dynamic Algorithm Selection: A
Proof-of-Principle Study on Differential Evolution
- URL: http://arxiv.org/abs/2403.02131v3
- Date: Thu, 7 Mar 2024 09:42:47 GMT
- Title: Deep Reinforcement Learning for Dynamic Algorithm Selection: A
Proof-of-Principle Study on Differential Evolution
- Authors: Hongshu Guo, Yining Ma, Zeyuan Ma, Jiacheng Chen, Xinglin Zhang,
Zhiguang Cao, Jun Zhang, Yue-Jiao Gong
- Abstract summary: We propose a deep reinforcement learning-based dynamic algorithm selection framework to accomplish this task.
We employ a sophisticated deep neural network model to infer the optimal action, ensuring informed algorithm selections.
As a proof-of-principle study, we apply this framework to a group of Differential Evolution algorithms.
- Score: 27.607740475924448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary algorithms, such as Differential Evolution, excel in solving
real-parameter optimization challenges. However, the effectiveness of a single
algorithm varies across different problem instances, necessitating considerable
efforts in algorithm selection or configuration. This paper aims to address the
limitation by leveraging the complementary strengths of a group of algorithms
and dynamically scheduling them throughout the optimization progress for
specific problems. We propose a deep reinforcement learning-based dynamic
algorithm selection framework to accomplish this task. Our approach models the
dynamic algorithm selection a Markov Decision Process, training an agent in a
policy gradient manner to select the most suitable algorithm according to the
features observed during the optimization process. To empower the agent with
the necessary information, our framework incorporates a thoughtful design of
landscape and algorithmic features. Meanwhile, we employ a sophisticated deep
neural network model to infer the optimal action, ensuring informed algorithm
selections. Additionally, an algorithm context restoration mechanism is
embedded to facilitate smooth switching among different algorithms. These
mechanisms together enable our framework to seamlessly select and switch
algorithms in a dynamic online fashion. Notably, the proposed framework is
simple and generic, offering potential improvements across a broad spectrum of
evolutionary algorithms. As a proof-of-principle study, we apply this framework
to a group of Differential Evolution algorithms. The experimental results
showcase the remarkable effectiveness of the proposed framework, not only
enhancing the overall optimization performance but also demonstrating favorable
generalization ability across different problem classes.
Related papers
- A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
We conduct an overview of the key contributions to algorithm selection in the field of single-objective continuous black-box optimization.
We study machine learning models for automated algorithm selection, configuration, and performance prediction.
arXiv Detail & Related papers (2024-06-08T11:11:14Z) - The Algorithm Configuration Problem [0.8075866265341176]
This article focuses on optimizing parametrized algorithms for solving specific instances of decision/optimization problems.
We present a comprehensive framework that not only formalizes the Algorithm Configuration Problem, but also outlines different approaches for its resolution.
arXiv Detail & Related papers (2024-03-01T17:29:34Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
We propose a novel algorithm for adaptive step length selection in the classical SGD framework.
Under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements.
We show that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.
arXiv Detail & Related papers (2023-05-17T06:22:11Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - Identifying Co-Adaptation of Algorithmic and Implementational
Innovations in Deep Reinforcement Learning: A Taxonomy and Case Study of
Inference-based Algorithms [15.338931971492288]
We focus on a series of inference-based actor-critic algorithms to decouple their algorithmic innovations and implementation decisions.
We identify substantial performance drops whenever implementation details are mismatched for algorithmic choices.
Results show which implementation details are co-adapted and co-evolved with algorithms.
arXiv Detail & Related papers (2021-03-31T17:55:20Z) - Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm
Selection [0.9281671380673306]
A key challenge in the application of evolutionary algorithms is the selection of an algorithm instance that best suits the problem at hand.
We analyze in this work how such prior performance data can be used to infer informed dynamic algorithm selection schemes for the solution of pseudo-Boolean optimization problems.
arXiv Detail & Related papers (2021-02-12T12:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.