論文の概要: The Hidden Costs of AI: A Review of Energy, E-Waste, and Inequality in Model Development
- arxiv url: http://arxiv.org/abs/2507.09611v1
- Date: Sun, 13 Jul 2025 12:31:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.581191
- Title: The Hidden Costs of AI: A Review of Energy, E-Waste, and Inequality in Model Development
- Title(参考訳): AIの隠れたコスト: モデル開発におけるエネルギー、E-Waste、不平等のレビュー
- Authors: Jenis Winsta,
- Abstract要約: レビューでは、AIの影響がパフォーマンスを超えて広がる4つの重要な領域について論じている。
モデルトレーニングからの高エミッション、ハードウェアのリターンアップ、グローバルインフラストラクチャの格差が強調されている。
最終的には、AIの進歩は倫理的責任と環境管理と一致しなければならない、と論じている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) has made remarkable progress in recent years, yet its rapid expansion brings overlooked environmental and ethical challenges. This review explores four critical areas where AI's impact extends beyond performance: energy consumption, electronic waste (e-waste), inequality in compute access, and the hidden energy burden of cybersecurity systems. Drawing from recent studies and institutional reports, the paper highlights systemic issues such as high emissions from model training, rising hardware turnover, global infrastructure disparities, and the energy demands of securing AI. By connecting these concerns, the review contributes to Responsible AI discourse by identifying key research gaps and advocating for sustainable, transparent, and equitable development practices. Ultimately, it argues that AI's progress must align with ethical responsibility and environmental stewardship to ensure a more inclusive and sustainable technological future.
- Abstract(参考訳): 人工知能(AI)は近年目覚ましい進歩を遂げているが、その急速な拡大は環境や倫理上の課題を見落としている。
このレビューでは、エネルギー消費、電子廃棄物(e-waste)、計算アクセスの不平等、サイバーセキュリティシステムの隠れたエネルギー負担の4つの重要な領域について調べる。
最近の研究や機関報告から引用して、この論文は、モデルトレーニングからの高エミッション、ハードウェアの回転率の向上、グローバルインフラストラクチャの格差、AIを保護するためのエネルギー需要など、システム上の問題を強調している。
これらの懸念を結び付けることで、このレビューは、主要な研究ギャップを特定し、持続的で透明で公平な開発プラクティスを提唱することで、責任あるAI談話に貢献する。
最終的に、AIの進歩は、より包括的で持続可能な技術的未来を保証するために、倫理的責任と環境管理とを一致させなければならない、と論じている。
関連論文リスト
- Responsible Data Stewardship: Generative AI and the Digital Waste Problem [0.0]
生成AIシステムは、テキスト、画像、オーディオ、ビデオモダリティにまたがる、前例のない合成データの生成レベルを可能にする。
デジタルムダ(Digital waste)とは、特定の目的(あるいは即時)を果たすことなく、リソースを消費するデータをいう。
本稿では,デジタル廃棄物を(生産的な)AI開発における倫理的命令として導入し,環境の持続可能性を責任あるイノベーションの核として位置づける。
論文 参考訳(メタデータ) (2025-05-27T20:07:22Z) - Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences [50.9036832382286]
我々は、AI研究成果に対する信頼の侵食の増加についてレビューする。
我々は、AIエコシステムの断片化されたコンポーネントと、OpenとSustainable AIを最大限にサポートするためのガイドパスの欠如について論じる。
私たちの研究は、研究者と関連するAIリソースを結びつけることで、持続可能な、再利用可能な、透過的なAIの実装を容易にします。
論文 参考訳(メタデータ) (2025-05-22T12:52:34Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
我々は、AIの倫理的影響を研究するための努力は、その環境への影響を評価するものと相まって行われるべきであると論じる。
我々は,AI研究と実践にAI倫理と持続可能性を統合するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2025-04-01T13:53:11Z) - From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
これらの2次の影響を理解するには、ライフサイクルアセスメントと社会経済分析を組み合わせた学際的アプローチが必要であると論じる。
AIの真の気候フットプリントを誤って表現し、意味のある介入の範囲を制限している、と我々は主張する。
論文 参考訳(メタデータ) (2025-01-27T22:45:06Z) - Responsible AI for Earth Observation [10.380878519901998]
私たちはAIとEOの交差点を体系的に定義し、責任あるAIプラクティスに重点を置いています。
学術と産業の両面からこの探究を導く重要な要素をいくつか挙げる。
本稿は、今後の研究成果に価値ある洞察を提供するとともに、今後の可能性と新たなトレンドを探求する。
論文 参考訳(メタデータ) (2024-05-31T14:47:27Z) - Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems [45.31340537171788]
サイバー物理システム(CPS)は、予測保守や生産計画を含むアプリケーションに人工知能(AI)が活用できる膨大なデータセットを生成する。
AIの可能性を実証しているにもかかわらず、製造業のような分野に広く採用されていることは依然として限られている。
論文 参考訳(メタデータ) (2024-05-28T20:54:41Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Broadening the perspective for sustainable AI: Comprehensive
sustainability criteria and indicators for AI systems [0.0]
本稿では,「持続可能なAI」に対する包括的視点の要求の実証に向けての一歩を踏み出す。
SCAIS Frameworkは、持続可能なAIと67の指標のための19の持続可能性基準を含んでいる。
論文 参考訳(メタデータ) (2023-06-22T18:00:55Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
我々は、AIの持続可能性問題に対処できる機械学習アプローチの大きなトレンドについてレビューする。
我々は、既存の研究の大きな限界を強調し、次世代の持続可能なAI技術を開発するための潜在的研究課題と方向性を提案する。
論文 参考訳(メタデータ) (2022-05-08T09:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。