Masked Conditioning for Deep Generative Models
- URL: http://arxiv.org/abs/2505.16725v1
- Date: Thu, 22 May 2025 14:33:03 GMT
- Title: Masked Conditioning for Deep Generative Models
- Authors: Phillip Mueller, Jannik Wiese, Sebastian Mueller, Lars Mikelsons,
- Abstract summary: We introduce a novel masked-conditioning approach that enables generative models to work with sparse, mixed-type data.<n>We show that small models trained on limited data can be coupled with large pretrained foundation models to improve generation quality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Datasets in engineering domains are often small, sparsely labeled, and contain numerical as well as categorical conditions. Additionally. computational resources are typically limited in practical applications which hinders the adoption of generative models for engineering tasks. We introduce a novel masked-conditioning approach, that enables generative models to work with sparse, mixed-type data. We mask conditions during training to simulate sparse conditions at inference time. For this purpose, we explore the use of various sparsity schedules that show different strengths and weaknesses. In addition, we introduce a flexible embedding that deals with categorical as well as numerical conditions. We integrate our method into an efficient variational autoencoder as well as a latent diffusion model and demonstrate the applicability of our approach on two engineering-related datasets of 2D point clouds and images. Finally, we show that small models trained on limited data can be coupled with large pretrained foundation models to improve generation quality while retaining the controllability induced by our conditioning scheme.
Related papers
- Test-Time Model Adaptation for Quantized Neural Networks [37.84294929199108]
Quantized models often suffer from severe performance degradation in dynamic environments with potential domain shifts.<n>Test-time adaptation (TTA) has emerged as an effective solution by enabling models to learn adaptively from test data.<n>We propose a continual zeroth-order adaptation (ZOA) framework that enables efficient model adaptation using only two forward passes.
arXiv Detail & Related papers (2025-08-04T08:24:19Z) - [MASK] is All You Need [28.90875822599164]
We propose using discrete-state models to connect Masked Generative and Non-autoregressive Diffusion models.<n>By leveraging [MASK] in discrete-state models, we can bridge Masked Generative and Non-autoregressive Diffusion models.
arXiv Detail & Related papers (2024-12-09T18:59:56Z) - Adaptable Embeddings Network (AEN) [49.1574468325115]
We introduce Adaptable Embeddings Networks (AEN), a novel dual-encoder architecture using Kernel Density Estimation (KDE)
AEN allows for runtime adaptation of classification criteria without retraining and is non-autoregressive.
The architecture's ability to preprocess and cache condition embeddings makes it ideal for edge computing applications and real-time monitoring systems.
arXiv Detail & Related papers (2024-11-21T02:15:52Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Latent variable model for high-dimensional point process with structured missingness [4.451479907610764]
Longitudinal data are important in numerous fields, such as healthcare, sociology and seismology.
Real-world datasets can be high-dimensional, contain structured missingness patterns, and measurement time points can be governed by an unknown process.
We propose a flexible and efficient latent-variable model that is capable of addressing all these limitations.
arXiv Detail & Related papers (2024-02-08T15:41:48Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
We propose adapting pre-trained unconditional diffusion models to new conditions using the learned internal representations of the denoiser network.
We show that augmenting the Tiny ImageNet training set with synthetic images generated by our approach improves the classification accuracy of ResNet baselines by up to 8%.
arXiv Detail & Related papers (2023-06-02T20:09:57Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Learning Consistent Deep Generative Models from Sparse Data via
Prediction Constraints [16.48824312904122]
We develop a new framework for learning variational autoencoders and other deep generative models.
We show that these two contributions -- prediction constraints and consistency constraints -- lead to promising image classification performance.
arXiv Detail & Related papers (2020-12-12T04:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.