論文の概要: Robust Vision-Based Runway Detection through Conformal Prediction and Conformal mAP
- arxiv url: http://arxiv.org/abs/2505.16740v1
- Date: Thu, 22 May 2025 14:52:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.368379
- Title: Robust Vision-Based Runway Detection through Conformal Prediction and Conformal mAP
- Title(参考訳): コンフォーマル予測とコンフォーマルmAPによるロバスト視覚に基づく滑走路検出
- Authors: Alya Zouzou, Léo andéol, Mélanie Ducoffe, Ryma Boumazouza,
- Abstract要約: 視覚ベースランディングシステム(VLS)における滑走路検出のための統計的不確実性保証のための共形予測の利用について検討する。
航空画像上でのYOLOv5とYOLOv6の微調整モデルを用いて,ユーザが定義したリスクレベル下での局所化信頼性の定量化に共形予測を適用した。
その結果,不確実性を統計的に健全な方法で定量化することにより,コンフォメーション予測により滑走路検出の信頼性が向上できることが示唆された。
- 参考スコア(独自算出の注目度): 1.3794573109655741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the use of conformal prediction to provide statistical uncertainty guarantees for runway detection in vision-based landing systems (VLS). Using fine-tuned YOLOv5 and YOLOv6 models on aerial imagery, we apply conformal prediction to quantify localization reliability under user-defined risk levels. We also introduce Conformal mean Average Precision (C-mAP), a novel metric aligning object detection performance with conformal guarantees. Our results show that conformal prediction can improve the reliability of runway detection by quantifying uncertainty in a statistically sound way, increasing safety on-board and paving the way for certification of ML system in the aerospace domain.
- Abstract(参考訳): 本稿では,視覚系着陸システム(VLS)における滑走路検出の統計的不確実性を保証するための共形予測の利用について検討する。
航空画像上でのYOLOv5とYOLOv6の微調整モデルを用いて,ユーザが定義したリスクレベル下での局所化信頼性の定量化に共形予測を適用した。
また、コンフォーマル平均平均精度(C-mAP)についても紹介する。
この結果から, コンフォメーション予測は, 統計的に健全な方法で不確実性を定量化し, 機内安全性を高め, 航空分野におけるMLシステムの認証の道を開くことにより, 滑走路検出の信頼性を向上させることができることがわかった。
関連論文リスト
- SConU: Selective Conformal Uncertainty in Large Language Models [59.25881667640868]
SconU(Selective Conformal Uncertainity)と呼ばれる新しいアプローチを提案する。
我々は,特定の管理可能なリスクレベルで設定されたキャリブレーションの不確実性分布から,与えられたサンプルが逸脱するかどうかを決定するのに役立つ2つの共形p値を開発する。
我々のアプローチは、単一ドメインと学際的コンテキストの両方にわたる誤発見率の厳密な管理を促進するだけでなく、予測の効率を高める。
論文 参考訳(メタデータ) (2025-04-19T03:01:45Z) - Uncertainty-Aware Online Extrinsic Calibration: A Conformal Prediction Approach [4.683612295430957]
我々はモンテカルロ・ドロップアウトとコンフォーマル予測を組み合わせた不確実性認識をオンラインキャリブレーションに統合する最初のアプローチを提案する。
本研究では,様々な視覚センサの種類にまたがって有効性を示し,測定値を用いて測定を行い,間隔の効率と信頼性を評価する。
動的環境におけるセンサ融合の堅牢性を大幅に向上させることができるキャリブレーション推定の信頼性に関する知見を提供する。
論文 参考訳(メタデータ) (2025-01-12T17:24:51Z) - Addressing Uncertainty in LLMs to Enhance Reliability in Generative AI [47.64301863399763]
中国レストランプロセスに触発された動的セマンティッククラスタリング手法を提案する。
生成したセマンティッククラスタのエントロピーを計算することにより,あるクエリ上でのLarge Language Model(LLM)の不確実性を定量化する。
本稿では,これらのクラスタの(負の)確率を,コンフォーマル予測フレームワーク内の(非)整合性スコアとして活用することを提案する。
論文 参考訳(メタデータ) (2024-11-04T18:49:46Z) - Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
結果として生じる不確実な値の整合性は、学習関数がGPモデルで指定された特性に従うという前提に基づいている。
提案するGPは,分散のない後処理フレームワークである共形予測(CP)を用いて,有意なカバレッジで予測セットを生成する。
論文 参考訳(メタデータ) (2024-10-07T19:22:15Z) - Spatial-Aware Conformal Prediction for Trustworthy Hyperspectral Image Classification [39.71307720326761]
ハイパースペクトル画像(HSI)分類では、各ピクセルに固有のラベルを割り当て、様々な土地被覆カテゴリを識別する。
深部分類器はこの分野で高い予測精度を達成したが、予測の信頼性を定量化する能力は欠如している。
本研究では,HSIデータに特化して設計されたコンフォメーション予測フレームワークであるSpatial-Aware Conformal Prediction (textttSACP)を紹介する。
論文 参考訳(メタデータ) (2024-09-02T13:11:38Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
自己整合性理論に基づく新しい不確実性尺度を導入する。
次に,CPアルゴリズムに正当性に整合した不確かさ条件を組み込むことにより,適合性不確かさの基準を策定する。
実証的な評価は、我々の不確実性測定が過去の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-06-29T17:33:07Z) - Confident Object Detection via Conformal Prediction and Conformal Risk
Control: an Application to Railway Signaling [0.0]
鉄道信号検出のための信頼性予測器構築のための共形予測手法を実証する。
我々のアプローチは、列車オペレーターと最先端のオブジェクト検出器の観点から撮影された画像を含む、新しいデータセットに基づいている。
論文 参考訳(メタデータ) (2023-04-12T08:10:13Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
メタ学習アルゴリズムであるF-PACOHを構築し,データ不足の設定において確実な定量化を実現する。
コアコントリビューションとして、安全に適合した事前をデータ駆動で選択するための新しいフレームワークを開発する。
ベンチマーク関数と高精度動作系において,我々のメタ学習先行が安全なBOアプローチの収束を加速することを示す。
論文 参考訳(メタデータ) (2022-10-03T08:38:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。