論文の概要: Trustworthy Federated Learning: A Survey
- arxiv url: http://arxiv.org/abs/2305.11537v1
- Date: Fri, 19 May 2023 09:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 15:17:07.000987
- Title: Trustworthy Federated Learning: A Survey
- Title(参考訳): 信頼に値する連合学習:調査
- Authors: Asadullah Tariq, Mohamed Adel Serhani, Farag Sallabi, Tariq Qayyum,
Ezedin S. Barka, Khaled A. Shuaib
- Abstract要約: 人工知能(AI)分野において、フェデレートラーニング(FL)が大きな進歩を遂げている。
我々は、Trustworthy FLの現状を概観し、既存のソリューションとTrustworthyに関連する明確に定義された柱を探求する。
本稿では,解釈可能性,公正性,セキュリティとプライバシの3つの柱を含む分類法を提案する。
- 参考スコア(独自算出の注目度): 0.5089078998562185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as a significant advancement in the field
of Artificial Intelligence (AI), enabling collaborative model training across
distributed devices while maintaining data privacy. As the importance of FL
increases, addressing trustworthiness issues in its various aspects becomes
crucial. In this survey, we provide an extensive overview of the current state
of Trustworthy FL, exploring existing solutions and well-defined pillars
relevant to Trustworthy . Despite the growth in literature on trustworthy
centralized Machine Learning (ML)/Deep Learning (DL), further efforts are
necessary to identify trustworthiness pillars and evaluation metrics specific
to FL models, as well as to develop solutions for computing trustworthiness
levels. We propose a taxonomy that encompasses three main pillars:
Interpretability, Fairness, and Security & Privacy. Each pillar represents a
dimension of trust, further broken down into different notions. Our survey
covers trustworthiness challenges at every level in FL settings. We present a
comprehensive architecture of Trustworthy FL, addressing the fundamental
principles underlying the concept, and offer an in-depth analysis of trust
assessment mechanisms. In conclusion, we identify key research challenges
related to every aspect of Trustworthy FL and suggest future research
directions. This comprehensive survey serves as a valuable resource for
researchers and practitioners working on the development and implementation of
Trustworthy FL systems, contributing to a more secure and reliable AI
landscape.
- Abstract(参考訳): フェデレートラーニング(FL)は、AI(Artificial Intelligence)分野における重要な進歩として現れ、データのプライバシを維持しながら、分散デバイス間で協調的なモデルトレーニングを可能にする。
flの重要性が高まるにつれて、その様々な側面における信頼性の問題への対処が重要となる。
本稿では、Trustworthy FLの現状を概観し、既存のソリューションとTrustworthy FLに関連する明確に定義された柱を探求する。
信頼性の高い集中型機械学習(ML)/深層学習(DL)に関する文献の増大にもかかわらず、FLモデル特有の信頼性柱と評価指標を特定し、信頼性レベルを計算するためのソリューションを開発するためにはさらなる努力が必要である。
我々は,解釈可能性,公平性,セキュリティとプライバシの3つの柱を包含する分類法を提案する。
各柱は信頼の次元を表し、さらに異なる概念に分解される。
FL設定のあらゆるレベルにおける信頼性の課題について調査した。
我々は,信頼に値するflの包括的アーキテクチャを提示し,概念の基礎となる基本原理を取り上げ,信頼評価機構の詳細な分析を行う。
結論として,Trustworthy FLのすべての側面に関連する重要な研究課題を特定し,今後の研究方向性を提案する。
この包括的な調査は、信頼できるflシステムの開発と実装に取り組んでいる研究者や実践者にとって貴重なリソースとなり、より安全で信頼性の高いai環境に寄与する。
関連論文リスト
- Enabling Trustworthy Federated Learning in Industrial IoT: Bridging the Gap Between Interpretability and Robustness [4.200214709723945]
Federated Learning(FL)は機械学習のパラダイムシフトであり、データのローカライズを維持しながら協調的なモデルトレーニングを可能にする。
IIoTにおけるFLの本質は、中央データストレージを必要とせずに、多様な分散データソースから学習できることにある。
この記事では、解釈可能性と堅牢性の間のギャップを埋めることで、IIoTで信頼できるFLを実現することに焦点を当てます。
論文 参考訳(メタデータ) (2024-09-01T15:13:39Z) - Assessing the Sustainability and Trustworthiness of Federated Learning
Models [7.228253116465784]
この研究は、最新の総合的な信頼に値するフェデレーテッドラーニングの分類にサステナビリティの柱を導入します。
FLシステムの環境影響を評価し、ハードウェア効率、フェデレーションの複雑さ、エネルギーグリッドの炭素強度の概念とメトリクスを取り入れている。
持続可能性柱を組み込むことで、FLモデルの信頼性を評価するアルゴリズムを実装している。
論文 参考訳(メタデータ) (2023-10-31T13:14:43Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
プライバシ保護のためのフェデレートラーニング(FL)の進化により、忘れられる権利を実装する必要性が高まっている。
選択的な忘れ方の実装は、その分散した性質のため、FLでは特に困難である。
Federated Unlearning(FU)は、データプライバシの必要性の増加に対応する戦略的ソリューションとして登場した。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) は,さまざまな現実のシナリオに対して,有望なソリューションとして注目されている。
しかし、データの分離とプライバシーに関する課題は、FLシステムの信頼性を脅かす。
論文 参考訳(メタデータ) (2023-02-21T12:52:12Z) - FederatedTrust: A Solution for Trustworthy Federated Learning [3.202927443898192]
IoT(Internet of Things)の急速な拡張により、中央集権型機械学習(ML/DL)メソッドの課題が提示された。
データプライバシに関する懸念に対処するため、フェデレートラーニング(FL)のような、協調的でプライバシ保護のML/DL技術が登場した。
論文 参考訳(メタデータ) (2023-02-20T09:02:24Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Towards Verifiable Federated Learning [15.758657927386263]
Federated Learning(FL)は、強力なモデルを構築しながらユーザのプライバシを保存する、コラボレーション機械学習の新たなパラダイムである。
自己関心のある団体によるオープンな参加の性質から、FLは正当なFL参加者による潜在的な不適切な行動から守らなければならない。
検証可能なフェデレーション学習は、学界や業界からも大きな関心を集めている研究の新たな話題となっている。
論文 参考訳(メタデータ) (2022-02-15T09:52:25Z) - Insights into Fairness through Trust: Multi-scale Trust Quantification
for Financial Deep Learning [94.65749466106664]
金融深層学習において探求されていない公平性の基本的な側面は、信頼の概念である。
クレジットカードのデフォルト予測のために,ディープニューラルネットワーク上でマルチスケール信頼度定量化を行う。
論文 参考訳(メタデータ) (2020-11-03T19:05:07Z) - Where Does Trust Break Down? A Quantitative Trust Analysis of Deep
Neural Networks via Trust Matrix and Conditional Trust Densities [94.65749466106664]
本稿では,新しい信頼量化戦略である信頼行列の概念を紹介する。
信頼行列は、所定のアクター・オークル回答シナリオに対して期待される質問・回答信頼を定義する。
我々は、条件付き信頼密度の概念により、信頼密度の概念をさらに拡張する。
論文 参考訳(メタデータ) (2020-09-30T14:33:43Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。