Minimax Rate-Optimal Algorithms for High-Dimensional Stochastic Linear Bandits
- URL: http://arxiv.org/abs/2505.17400v1
- Date: Fri, 23 May 2025 02:20:00 GMT
- Title: Minimax Rate-Optimal Algorithms for High-Dimensional Stochastic Linear Bandits
- Authors: Jingyu Liu, Yanglei Song,
- Abstract summary: We study the linear bandit problem with multiple arms over $T$ rounds.<n>We show that Lasso estimators are provably suboptimal in the sequential setting.<n>We propose a three-stage arm selection algorithm that uses thresholded Lasso as the main estimation method.
- Score: 1.2010968598596632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the stochastic linear bandit problem with multiple arms over $T$ rounds, where the covariate dimension $d$ may exceed $T$, but each arm-specific parameter vector is $s$-sparse. We begin by analyzing the sequential estimation problem in the single-arm setting, focusing on cumulative mean-squared error. We show that Lasso estimators are provably suboptimal in the sequential setting, exhibiting suboptimal dependence on $d$ and $T$, whereas thresholded Lasso estimators -- obtained by applying least squares to the support selected by thresholding an initial Lasso estimator -- achieve the minimax rate. Building on these insights, we consider the full linear contextual bandit problem and propose a three-stage arm selection algorithm that uses thresholded Lasso as the main estimation method. We derive an upper bound on the cumulative regret of order $s(\log s)(\log d + \log T)$, and establish a matching lower bound up to a $\log s$ factor, thereby characterizing the minimax regret rate up to a logarithmic term in $s$. Moreover, when a short initial period is excluded from the regret, the proposed algorithm achieves exact minimax optimality.
Related papers
- Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
arXiv Detail & Related papers (2025-06-03T02:56:26Z) - Linear bandits with polylogarithmic minimax regret [8.97780713904412]
We study a noise model for linear bandits for which the subgaussian noise parameter vanishes linearly as we select actions on the unit sphere closer and closer to the unknown vector.
We introduce an algorithm for this problem that exhibits a minimax regret scaling as $log3(T)$ in the time horizon $T$, in stark contrast the square root scaling of this regret for typical bandit algorithms.
arXiv Detail & Related papers (2024-02-19T10:56:47Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Fixed-Budget Best-Arm Identification in Sparse Linear Bandits [69.6194614504832]
We study the best-arm identification problem in sparse linear bandits under the fixed-budget setting.
We design a two-phase algorithm, Lasso and Optimal-Design- (Lasso-OD) based linear best-arm identification.
We show that Lasso-OD is almost minimax optimal in the exponent.
arXiv Detail & Related papers (2023-11-01T12:32:17Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Optimal and instance-dependent guarantees for Markovian linear stochastic approximation [47.912511426974376]
We show a non-asymptotic bound of the order $t_mathrmmix tfracdn$ on the squared error of the last iterate of a standard scheme.
We derive corollaries of these results for policy evaluation with Markov noise.
arXiv Detail & Related papers (2021-12-23T18:47:50Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Regret Lower Bound and Optimal Algorithm for High-Dimensional Contextual
Linear Bandit [10.604939762790517]
We prove a minimax lower bound, $mathcalObig((log d)fracalpha+12Tfrac1-alpha2+log Tbig)$, for the cumulative regret.
Second, we propose a simple and computationally efficient algorithm inspired by the general Upper Confidence Bound (UCB) strategy.
arXiv Detail & Related papers (2021-09-23T19:35:38Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
We investigate the active pure exploration problem in Markov Decision Processes.
Agent sequentially selects actions and, from the resulting system trajectory, aims at the best as fast as possible.
arXiv Detail & Related papers (2021-06-05T09:16:28Z) - Optimal Algorithms for Stochastic Multi-Armed Bandits with Heavy Tailed
Rewards [24.983866845065926]
We consider multi-armed bandits with heavy-tailed rewards, whose $p$-th moment is bounded by a constant $nu_p$ for $1pleq2$.
We propose a novel robust estimator which does not require $nu_p$ as prior information.
We show that an error probability of the proposed estimator decays exponentially fast.
arXiv Detail & Related papers (2020-10-24T10:44:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.