LeTS: Learning to Think-and-Search via Process-and-Outcome Reward Hybridization
- URL: http://arxiv.org/abs/2505.17447v1
- Date: Fri, 23 May 2025 04:04:05 GMT
- Title: LeTS: Learning to Think-and-Search via Process-and-Outcome Reward Hybridization
- Authors: Qi Zhang, Shouqing Yang, Lirong Gao, Hao Chen, Xiaomeng Hu, Jinglei Chen, Jiexiang Wang, Sheng Guo, Bo Zheng, Haobo Wang, Junbo Zhao,
- Abstract summary: Large language models (LLMs) have demonstrated impressive capabilities in reasoning.<n>Recent research focuses on integrating reasoning capabilities into the realm of retrieval-augmented generation (RAG) via outcome-supervised reinforcement learning (RL) approaches.<n>We propose Learning to Think-and-Search (LeTS), a novel framework that hybridizes stepwise process reward and outcome-based reward to current RL methods for RAG.
- Score: 30.95342819013663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities in reasoning with the emergence of reasoning models like OpenAI-o1 and DeepSeek-R1. Recent research focuses on integrating reasoning capabilities into the realm of retrieval-augmented generation (RAG) via outcome-supervised reinforcement learning (RL) approaches, while the correctness of intermediate think-and-search steps is usually neglected. To address this issue, we design a process-level reward module to mitigate the unawareness of intermediate reasoning steps in outcome-level supervision without additional annotation. Grounded on this, we propose Learning to Think-and-Search (LeTS), a novel framework that hybridizes stepwise process reward and outcome-based reward to current RL methods for RAG. Extensive experiments demonstrate the generalization and inference efficiency of LeTS across various RAG benchmarks. In addition, these results reveal the potential of process- and outcome-level reward hybridization in boosting LLMs' reasoning ability via RL under other scenarios. The code will be released soon.
Related papers
- Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Consistent Paths Lead to Truth: Self-Rewarding Reinforcement Learning for LLM Reasoning [87.7836502955847]
We propose a novel self-rewarding reinforcement learning framework to enhance Large Language Model (LLM) reasoning.<n>Our key insight is that correct responses often exhibit consistent trajectory patterns in terms of model likelihood.<n>We introduce CoVo, an intrinsic reward mechanism that integrates Consistency and Volatility via a robust vector-space aggregation strategy.
arXiv Detail & Related papers (2025-06-10T12:40:39Z) - Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning [10.255235456427037]
We propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in Large Language Models (LLMs)<n>The first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization.<n>The second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization.
arXiv Detail & Related papers (2025-05-27T13:29:51Z) - Hybrid Latent Reasoning via Reinforcement Learning [51.06635386903026]
We explore latent reasoning by leveraging the capabilities of large language models (LLMs) via reinforcement learning (RL)<n>We introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that integrates prior hidden states into sampled tokens with a learnable gating mechanism.<n>HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths.
arXiv Detail & Related papers (2025-05-24T01:26:16Z) - Improving RL Exploration for LLM Reasoning through Retrospective Replay [45.00643118030677]
We propose a novel algorithm named Retrospective Replay-based Reinforcement Learning (RRL), which introduces a dynamic replay mechanism throughout the training process.<n>RRL enables the model to revisit promising states identified in the early stages, thereby improving its efficiency and effectiveness in exploration.
arXiv Detail & Related papers (2025-04-19T17:40:04Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.<n>We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG [36.754491649652664]
Retrieval-augmented generation (RAG) empowers large language models (LLMs) to utilize external knowledge sources.
This paper investigates the detrimental impact of retrieved "hard negatives" as a key contributor.
To mitigate this and enhance the robustness of long-context LLM-based RAG, we propose both training-free and training-based approaches.
arXiv Detail & Related papers (2024-10-08T12:30:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.