論文の概要: Benchmarking the Discovery Engine
- arxiv url: http://arxiv.org/abs/2507.00964v1
- Date: Tue, 01 Jul 2025 17:13:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.746607
- Title: Benchmarking the Discovery Engine
- Title(参考訳): Discovery Engineのベンチマーク
- Authors: Jack Foxabbott, Arush Tagade, Andrew Cusick, Robbie McCorkell, Leo McKee-Reid, Jugal Patel, Jamie Rumbelow, Jessica Rumbelow, Zohreh Shams,
- Abstract要約: ディスカバリーエンジンは科学的な発見のための汎用的な自動化システムである。
機械学習と最先端のML解釈能力を組み合わせて、迅速で堅牢な科学的洞察を可能にする。
- 参考スコア(独自算出の注目度): 1.268004015017258
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Discovery Engine is a general purpose automated system for scientific discovery, which combines machine learning with state-of-the-art ML interpretability to enable rapid and robust scientific insight across diverse datasets. In this paper, we benchmark the Discovery Engine against five recent peer-reviewed scientific publications applying machine learning across medicine, materials science, social science, and environmental science. In each case, the Discovery Engine matches or exceeds prior predictive performance while also generating deeper, more actionable insights through rich interpretability artefacts. These results demonstrate its potential as a new standard for automated, interpretable scientific modelling that enables complex knowledge discovery from data.
- Abstract(参考訳): Discovery Engineは科学的な発見のための汎用的な自動化システムであり、機械学習と最先端のML解釈能力を組み合わせて、多様なデータセットにわたる迅速かつ堅牢な科学的洞察を可能にする。
本稿では,医学,材料科学,社会科学,環境科学にまたがって機械学習を適用した最近の5つの査読された学術出版物に対して,ディスカバリエンジンをベンチマークする。
いずれの場合も、Discovery Engineは事前の予測性能と一致しているか、あるいは超過します。
これらの結果は、データから複雑な知識発見を可能にする自動化された解釈可能な科学モデリングのための新しい標準としての可能性を示している。
関連論文リスト
- The Discovery Engine: A Framework for AI-Driven Synthesis and Navigation of Scientific Knowledge Landscapes [0.0]
本稿では,文献を科学的領域の統一的,計算的に抽出可能な表現に変換するフレームワークであるDiscovery Engineを紹介する。
Discovery Engineは、AIが強化した科学調査と発見の加速のための新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2025-05-23T05:51:34Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
科学科学(Science of Science, SoS)は、科学的発見の基礎となるメカニズムを探求する。
人工知能(AI)の出現は、次世代のSoSに変革の機会をもたらす。
我々は、従来の手法よりもAIの利点を概説し、潜在的な制限について議論し、それらを克服するための経路を提案する。
論文 参考訳(メタデータ) (2025-05-17T15:01:33Z) - Interpretable Machine Learning in Physics: A Review [10.77934040629518]
我々は、科学における中核研究として解釈可能な機械学習を確立することを目指している。
我々は、解釈可能性の異なる側面を分類し、解釈可能性と性能の両方の観点から機械学習モデルについて議論する。
我々は、物理学の多くのサブフィールドにまたがる、解釈可能な機械学習の最近の進歩を強調した。
論文 参考訳(メタデータ) (2025-03-30T22:44:40Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
自律的なジェネラリスト科学者(AGS)の概念は、エージェントAIとエンボディロボットを組み合わせて、研究ライフサイクル全体を自動化している。
AGSは科学的発見に必要な時間と資源を大幅に削減することを目指している。
これらの自律的なシステムが研究プロセスにますます統合されるにつれて、科学的な発見が新しいスケーリング法則に従うかもしれないという仮説を立てる。
論文 参考訳(メタデータ) (2025-03-28T14:00:27Z) - Building Machine Learning Challenges for Anomaly Detection in Science [94.24422981343699]
本稿では,異なる科学領域を対象とした機械学習による異常検出を目的とした3つのデータセットを提案する。
3つのデータセットを検索可能、アクセス可能、相互運用可能、再利用可能なものにするために、機械学習の課題を提起する。
論文 参考訳(メタデータ) (2025-03-03T22:54:07Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
人工知能の鍵となる課題は、科学的理解を自律的に進めるシステムを作ることである。
3つのコア概念を活用するアプローチであるSciAgentsを提案する。
この枠組みは研究仮説を自律的に生成し、基礎となるメカニズム、設計原則、予期せぬ材料特性を解明する。
我々のケーススタディでは、生成AI、オントロジ表現、マルチエージェントモデリングを組み合わせて、生物学的システムに似た知能の群を活用できるスケーラブルな能力を実証している。
論文 参考訳(メタデータ) (2024-09-09T12:25:10Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - Scientific Machine Learning Benchmarks [0.17205106391379021]
ディープラーニングニューラルネットワークのブレークスルーは、非常に大規模な実験データセットの分析にAIと機械学習技術の使用を変革した。
科学データセットの分析に最も適した機械学習アルゴリズムを特定することは、科学者にとって依然として課題である。
科学機械学習ベンチマークの開発における我々のアプローチを解説し、科学機械学習ベンチマークに対する他のアプローチについてレビューする。
論文 参考訳(メタデータ) (2021-10-25T10:05:11Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - Scientific intuition inspired by machine learning generated hypotheses [2.294014185517203]
私たちは、機械学習モデル自体が得る洞察と知識に焦点を移します。
決定木では, 化学や物理から, ビッグデータから人間の解釈可能な洞察を抽出するために, 勾配増進法を適用した。
数値を超える能力は、機械学習を使って概念理解の発見を加速する扉を開く。
論文 参考訳(メタデータ) (2020-10-27T12:12:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。