Optimizing Retrieval-Augmented Generation for Electrical Engineering: A Case Study on ABB Circuit Breakers
- URL: http://arxiv.org/abs/2505.17520v1
- Date: Fri, 23 May 2025 06:21:37 GMT
- Title: Optimizing Retrieval-Augmented Generation for Electrical Engineering: A Case Study on ABB Circuit Breakers
- Authors: Salahuddin Alawadhi, Noorhan Abbas,
- Abstract summary: This study investigates the ap-plication of RAG for ABB circuit breakers.<n>By leveraging tailored datasets, advanced embedding models, and optimized chunking strategies, the research addresses challenges in data retrieval and contextual alignment.<n>The findings in this paper help advance research of AI in highly technical domains such as electrical engineering.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating Retrieval Augmented Generation (RAG) with Large Language Models (LLMs) has shown the potential to provide precise, contextually relevant responses in knowledge intensive domains. This study investigates the ap-plication of RAG for ABB circuit breakers, focusing on accuracy, reliability, and contextual relevance in high-stakes engineering environments. By leveraging tailored datasets, advanced embedding models, and optimized chunking strategies, the research addresses challenges in data retrieval and contextual alignment unique to engineering documentation. Key contributions include the development of a domain-specific dataset for ABB circuit breakers and the evaluation of three RAG pipelines: OpenAI GPT4o, Cohere, and Anthropic Claude. Advanced chunking methods, such as paragraph-based and title-aware segmentation, are assessed for their impact on retrieval accuracy and response generation. Results demonstrate that while certain configurations achieve high precision and relevancy, limitations persist in ensuring factual faithfulness and completeness, critical in engineering contexts. This work underscores the need for iterative improvements in RAG systems to meet the stringent demands of electrical engineering tasks, including design, troubleshooting, and operational decision-making. The findings in this paper help advance research of AI in highly technical domains such as electrical engineering.
Related papers
- A Systematic Review of Key Retrieval-Augmented Generation (RAG) Systems: Progress, Gaps, and Future Directions [1.4931265249949528]
Retrieval-Augmented Generation (RAG) is a major advancement in natural language processing (NLP)<n>RAG combines large language models (LLMs) with information retrieval systems to enhance factual grounding, accuracy, and contextual relevance.<n>This paper presents a systematic review of RAG, tracing its evolution from early developments in open domain question answering to recent state-of-the-art implementations.
arXiv Detail & Related papers (2025-07-25T03:05:46Z) - Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers [0.0]
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance large language models.<n>RAG introduces new challenges in retrieval quality, grounding fidelity, pipeline efficiency, and robustness against noisy or adversarial inputs.<n>This survey aims to consolidate current knowledge in RAG research and serve as a foundation for the next generation of retrieval-augmented language modeling systems.
arXiv Detail & Related papers (2025-05-28T22:57:04Z) - DO-RAG: A Domain-Specific QA Framework Using Knowledge Graph-Enhanced Retrieval-Augmented Generation [4.113142669523488]
Domain-specific QA systems require generative fluency but high factual accuracy grounded in structured expert knowledge.<n>We propose DO-RAG, a scalable and customizable hybrid QA framework that integrates multi-level knowledge graph construction with semantic vector retrieval.
arXiv Detail & Related papers (2025-05-17T06:40:17Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Offline Model-Based Optimization: Comprehensive Review [61.91350077539443]
offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets.<n>Recent advances in model-based optimization have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models.<n>Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review.
arXiv Detail & Related papers (2025-03-21T16:35:02Z) - Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
This paper presents a novel agentic AI solution built on a Weighted Retrieval-Augmented Generation (RAG) Framework tailored for enterprise technical troubleshooting.<n>By dynamically weighting retrieval sources such as product manuals, internal knowledge bases, FAQ, and troubleshooting guides, the framework prioritizes the most relevant data.<n>Preliminary evaluations on large enterprise datasets demonstrate the framework's efficacy in improving troubleshooting accuracy, reducing resolution times, and adapting to varied technical challenges.
arXiv Detail & Related papers (2024-12-16T17:32:38Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
Retrieval-Augmented Generation (RAG) has emerged as a paradigm to address such challenges.
RAG introduces the information retrieval process, which enhances the generation process by retrieving relevant objects from available data stores.
In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios.
arXiv Detail & Related papers (2024-02-29T18:59:01Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
arXiv Detail & Related papers (2023-06-20T14:21:58Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data.
transformer models excel in handling long dependencies between input sequence elements and enable parallel processing.
Our survey encompasses the identification of the top five application domains for transformer-based models.
arXiv Detail & Related papers (2023-06-11T23:13:51Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.