Strictly Constrained Generative Modeling via Split Augmented Langevin Sampling
- URL: http://arxiv.org/abs/2505.18017v2
- Date: Mon, 26 May 2025 02:13:32 GMT
- Title: Strictly Constrained Generative Modeling via Split Augmented Langevin Sampling
- Authors: Matthieu Blanke, Yongquan Qu, Sara Shamekh, Pierre Gentine,
- Abstract summary: We develop a principled framework for sampling from a target distribution while rigorously satisfying physical constraints.<n>We propose Split Augmented Langevin (SAL), a novel primal-dual sampling algorithm that enforces constraints progressively through variable splitting, with convergence guarantees.<n>We apply our method to diffusion-based data assimilation on a complex physical system, where enforcing physical constraints substantially improves both forecast accuracy and the preservation of critical conserved quantities.
- Score: 0.1052166918701117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep generative models hold great promise for representing complex physical systems, but their deployment is currently limited by the lack of guarantees on the physical plausibility of the generated outputs. Ensuring that known physical constraints are enforced is therefore critical when applying generative models to scientific and engineering problems. We address this limitation by developing a principled framework for sampling from a target distribution while rigorously satisfying physical constraints. Leveraging the variational formulation of Langevin dynamics, we propose Split Augmented Langevin (SAL), a novel primal-dual sampling algorithm that enforces constraints progressively through variable splitting, with convergence guarantees. While the method is developed theoretically for Langevin dynamics, we demonstrate its effective applicability to diffusion models. In particular, we use constrained diffusion models to generate physical fields satisfying energy and mass conservation laws. We apply our method to diffusion-based data assimilation on a complex physical system, where enforcing physical constraints substantially improves both forecast accuracy and the preservation of critical conserved quantities. We also demonstrate the potential of SAL for challenging feasibility problems in optimal control.
Related papers
- Iterative Distillation for Reward-Guided Fine-Tuning of Diffusion Models in Biomolecular Design [53.93023688824764]
We address the problem of fine-tuning diffusion models for reward-guided generation in biomolecular design.<n>We propose an iterative distillation-based fine-tuning framework that enables diffusion models to optimize for arbitrary reward functions.<n>Our off-policy formulation, combined with KL divergence minimization, enhances training stability and sample efficiency compared to existing RL-based methods.
arXiv Detail & Related papers (2025-07-01T05:55:28Z) - Simulation-Free Differential Dynamics through Neural Conservation Laws [22.4113724471297]
We present a novel simulation-free framework for training continuous-time diffusion processes over very general objective functions.<n>We propose a coupled parameterization which jointly models a time-dependent density function, or probability path, and the dynamics of a diffusion process that generates this probability path.
arXiv Detail & Related papers (2025-06-23T13:04:23Z) - Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints [0.6990493129893112]
Deep generative models have recently been applied to physical systems governed by partial differential equations (PDEs)<n>Existing methods often rely on soft penalties or architectural biases that fail to guarantee hard constraints.<n>We propose Physics-Constrained Flow Matching, a zero-shot inference framework that enforces arbitrary nonlinear constraints in pretrained flow-based generative models.
arXiv Detail & Related papers (2025-06-04T17:12:37Z) - Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants [0.0]
Generative models have demonstrated remarkable success in domains such as text, image, and video.<n>In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation.<n>We propose a novel generative model based on interpolants, which enables probabilistic forecasting while incorporating physical constraints.
arXiv Detail & Related papers (2025-04-08T09:29:01Z) - Constrained Language Generation with Discrete Diffusion Models [61.81569616239755]
We present Constrained Discrete Diffusion (CDD), a novel method for enforcing constraints on natural language by integrating discrete diffusion models with differentiable optimization.<n>We show how this technique can be applied to satisfy a variety of natural language constraints, including (i) toxicity mitigation by preventing harmful content from emerging, (ii) character and sequence level lexical constraints, and (iii) novel molecule sequence generation with specific property adherence.
arXiv Detail & Related papers (2025-03-12T19:48:12Z) - UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
Existing approaches rely on either autoregressive sequence models or diffusion models.<n>We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.<n>We validate the effectiveness of UniGenX on material and small molecule generation tasks.
arXiv Detail & Related papers (2025-03-09T16:43:07Z) - Training-Free Constrained Generation With Stable Diffusion Models [45.138721047543214]
We propose a novel approach to integrate stable diffusion models with constrained optimization frameworks.<n>We demonstrate the effectiveness of this approach through material science experiments requiring adherence to precise morphometric properties.
arXiv Detail & Related papers (2025-02-08T16:11:17Z) - Efficient Fine-Tuning and Concept Suppression for Pruned Diffusion Models [93.76814568163353]
We propose a novel bilevel optimization framework for pruned diffusion models.<n>This framework consolidates the fine-tuning and unlearning processes into a unified phase.<n>It is compatible with various pruning and concept unlearning methods.
arXiv Detail & Related papers (2024-12-19T19:13:18Z) - Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design [56.957070405026194]
We propose an algorithm that enables direct backpropagation of rewards through entire trajectories generated by diffusion models.<n>DRAKES can generate sequences that are both natural-like and yield high rewards.
arXiv Detail & Related papers (2024-10-17T15:10:13Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
This paper introduces an approach to generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles.
The proposed method recast the traditional process of generative diffusion as a constrained distribution problem to ensure adherence to constraints.
arXiv Detail & Related papers (2024-02-05T22:18:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.