Structured Thinking Matters: Improving LLMs Generalization in Causal Inference Tasks
- URL: http://arxiv.org/abs/2505.18034v2
- Date: Tue, 27 May 2025 08:16:01 GMT
- Title: Structured Thinking Matters: Improving LLMs Generalization in Causal Inference Tasks
- Authors: Wentao Sun, João Paulo Nogueira, Alonso Silva,
- Abstract summary: Recent results from the Corr2Cause dataset benchmark reveal that state-of-the-art LLMs only marginally outperform random baselines.<n>We provide the model with the capability to structure its thinking by guiding the model to build a structured knowledge graph.<n> Experiments on the test subset of the Corr2Cause dataset benchmark with Qwen3-32B model (reasoning model) show substantial gains over standard direct prompting methods.
- Score: 0.7988085110283119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite remarkable advances in the field, LLMs remain unreliable in distinguishing causation from correlation. Recent results from the Corr2Cause dataset benchmark reveal that state-of-the-art LLMs -- such as GPT-4 (F1 score: 29.08) -- only marginally outperform random baselines (Random Uniform, F1 score: 20.38), indicating limited capacity of generalization. To tackle this limitation, we propose a novel structured approach: rather than directly answering causal queries, we provide the model with the capability to structure its thinking by guiding the model to build a structured knowledge graph, systematically encoding the provided correlational premises, to answer the causal queries. This intermediate representation significantly enhances the model's causal capabilities. Experiments on the test subset of the Corr2Cause dataset benchmark with Qwen3-32B model (reasoning model) show substantial gains over standard direct prompting methods, improving F1 scores from 32.71 to 48.26 (over 47.5% relative increase), along with notable improvements in precision and recall. These results underscore the effectiveness of providing the model with the capability to structure its thinking and highlight its promising potential for broader generalization across diverse causal inference tasks.
Related papers
- Trustworthy Reasoning: Evaluating and Enhancing Factual Accuracy in LLM Intermediate Thought Processes [16.451488374845407]
We present a novel framework addressing a critical vulnerability in Large Language Models (LLMs)<n>This phenomenon poses substantial risks in high-stakes domains including healthcare, legal analysis, and scientific research.
arXiv Detail & Related papers (2025-07-25T10:34:51Z) - Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning [22.32435186013626]
We propose a causal representation learning framework wherein observed benchmark performance is modeled as a linear transformation of a few latent capability factors.<n>Applying this approach to a comprehensive dataset encompassing over 1500 models evaluated across six benchmarks, we identify a concise three-node linear causal structure that reliably explains the observed performance variations.
arXiv Detail & Related papers (2025-06-12T06:07:42Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - A NotSo Simple Way to Beat Simple Bench [0.0]
This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs)<n>We propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness.<n>Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts.
arXiv Detail & Related papers (2024-12-12T16:04:31Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.<n>The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.<n>We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.