Development of Interactive Nomograms for Predicting Short-Term Survival in ICU Patients with Aplastic Anemia
- URL: http://arxiv.org/abs/2505.18421v1
- Date: Fri, 23 May 2025 23:01:11 GMT
- Title: Development of Interactive Nomograms for Predicting Short-Term Survival in ICU Patients with Aplastic Anemia
- Authors: Junyi Fan, Shuheng Chen, Li Sun, Yong Si, Elham Pishgar, Kamiar Alaei, Greg Placencia, Maryam Pishgar,
- Abstract summary: Aplastic anemia is a rare, life-threatening hematologic disorder characterized by pancytopenia and bone marrow failure.<n>We used the MIMIC-IV database to identify ICU patients with aplastic anemia and extracted clinical features from five domains.<n> Logistic regression and Cox regression models were constructed to predict 7-, 14-, and 28-day mortality.
- Score: 3.5626691568652507
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Aplastic anemia is a rare, life-threatening hematologic disorder characterized by pancytopenia and bone marrow failure. ICU admission in these patients often signals critical complications or disease progression, making early risk assessment crucial for clinical decision-making and resource allocation. In this study, we used the MIMIC-IV database to identify ICU patients diagnosed with aplastic anemia and extracted clinical features from five domains: demographics, synthetic indicators, laboratory results, comorbidities, and medications. Over 400 variables were reduced to seven key predictors through machine learning-based feature selection. Logistic regression and Cox regression models were constructed to predict 7-, 14-, and 28-day mortality, and their performance was evaluated using AUROC. External validation was conducted using the eICU Collaborative Research Database to assess model generalizability. Among 1,662 included patients, the logistic regression model demonstrated superior performance, with AUROC values of 0.8227, 0.8311, and 0.8298 for 7-, 14-, and 28-day mortality, respectively, compared to the Cox model. External validation yielded AUROCs of 0.7391, 0.7119, and 0.7093. Interactive nomograms were developed based on the logistic regression model to visually estimate individual patient risk. In conclusion, we identified a concise set of seven predictors, led by APS III, to build validated and generalizable nomograms that accurately estimate short-term mortality in ICU patients with aplastic anemia. These tools may aid clinicians in personalized risk stratification and decision-making at the point of care.
Related papers
- Translating Machine Learning Interpretability into Clinical Insights for ICU Mortality Prediction [0.18416014644193068]
We developed and rigorously evaluated two machine learning models along with interpretation mechanisms.<n>We examined two datasets: one with imputed missing values (130,810 patients, 5.58% ICU mortality) and another excluding patients with missing data (5,661 patients, 23.65% ICU mortality)<n>The random forest (RF) model demonstrated an AUROC of 0.912 with the first dataset and 0.839 with the second dataset, while the XGBoost model achieved an AUROC of 0.924 with the first dataset and 0.834 with the second dataset.
arXiv Detail & Related papers (2025-07-30T02:19:06Z) - Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning [3.4335475695580127]
Hypertensive kidney disease (HKD) patients in intensive care units (ICUs) face high short-term mortality.<n>We developed a machine learning framework to predict 30-day in-hospital mortality among ICU patients with HKD.
arXiv Detail & Related papers (2025-07-25T00:48:23Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - Machine Learning-Based Model for Postoperative Stroke Prediction in Coronary Artery Disease [0.0]
This study aims to develop and evaluate a sophisticated machine learning prediction model to assess postoperative stroke risk.<n>The dataset has 70% training and 30% test. Numerical values were normalized, whereas categorical variables were one-hot encoded.<n> Logistic Regression, XGBoost, SVM, and CatBoost were employed for predictive modeling, and SHAP analysis assessed stroke risk for each variable.
arXiv Detail & Related papers (2025-03-15T02:50:32Z) - CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
We introduce a novel method called causal rule generation with target trial emulation framework (CRTRE)
CRTRE applies randomize trial design principles to estimate the causal effect of association rules.
We then incorporate such association rules for the downstream applications such as prediction of disease onsets.
arXiv Detail & Related papers (2024-11-10T02:40:06Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
Sepsis is a severe condition responsible for many deaths in the United States and worldwide.<n>Previous studies employing machine learning faced limitations in feature selection and model interpretability.<n>This research aimed to develop an interpretable and accurate machine learning model to predict in-hospital sepsis mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
Peritoneal Dialysis (PD) is one of the most widely used life-supporting therapies for patients with End-Stage Renal Disease (ESRD)
Here, our objective is to develop a deep learning model for a real-time, individualized, and interpretable mortality prediction model - AICare.
This study has collected 13,091 clinical follow-up visits and demographic data of 656 PD patients.
arXiv Detail & Related papers (2023-01-17T13:17:54Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
Elderly patients with MODS have high risk of death and poor prognosis.
This study aims to develop an interpretable and generalizable model for early mortality prediction in elderly patients with MODS.
arXiv Detail & Related papers (2020-01-28T17:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.