Adaptive Prediction-Powered AutoEval with Reliability and Efficiency Guarantees
- URL: http://arxiv.org/abs/2505.18659v1
- Date: Sat, 24 May 2025 11:53:29 GMT
- Title: Adaptive Prediction-Powered AutoEval with Reliability and Efficiency Guarantees
- Authors: Sangwoo Park, Matteo Zecchin, Osvaldo Simeone,
- Abstract summary: We propose textttR-AutoEval+, a novel framework that provides finite-sample reliability guarantees on the model evaluation.<n>The key innovation of textttR-AutoEval+ is an adaptive construction of the model evaluation variable, which dynamically tunes its reliance on synthetic data.
- Score: 36.407171992845456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selecting artificial intelligence (AI) models, such as large language models (LLMs), from multiple candidates requires accurate performance estimation. This is ideally achieved through empirical evaluations involving abundant real-world data. However, such evaluations are costly and impractical at scale. To address this challenge, autoevaluation methods leverage synthetic data produced by automated evaluators, such as LLMs-as-judges, reducing variance but potentially introducing bias. Recent approaches have employed semi-supervised prediction-powered inference (\texttt{PPI}) to correct for the bias of autoevaluators. However, the use of autoevaluators may lead in practice to a degradation in sample efficiency compared to conventional methods using only real-world data. In this paper, we propose \texttt{R-AutoEval+}, a novel framework that provides finite-sample reliability guarantees on the model evaluation, while also ensuring an enhanced (or at least no worse) sample efficiency compared to conventional methods. The key innovation of \texttt{R-AutoEval+} is an adaptive construction of the model evaluation variable, which dynamically tunes its reliance on synthetic data, reverting to conventional methods when the autoevaluator is insufficiently accurate. Experiments on the use of LLMs-as-judges for the optimization of quantization settings for the weights of an LLM, and for prompt design in LLMs confirm the reliability and efficiency of \texttt{R-AutoEval+}.
Related papers
- Taming Polysemanticity in LLMs: Provable Feature Recovery via Sparse Autoencoders [50.52694757593443]
Existing SAE training algorithms often lack rigorous mathematical guarantees and suffer from practical limitations.<n>We first propose a novel statistical framework for the feature recovery problem, which includes a new notion of feature identifiability.<n>We introduce a new SAE training algorithm based on bias adaptation'', a technique that adaptively adjusts neural network bias parameters to ensure appropriate activation sparsity.
arXiv Detail & Related papers (2025-06-16T20:58:05Z) - CalibraEval: Calibrating Prediction Distribution to Mitigate Selection Bias in LLMs-as-Judges [21.580762639442913]
We introduce CalibraEval, a novel label-free method for mitigating selection bias during inference.
CalibraEval reformulates debiasing as an optimization task aimed at adjusting observed prediction distributions to align with unbiased prediction distributions.
We show that CalibraEval effectively mitigates selection bias and improves performance compared to existing debiasing methods.
arXiv Detail & Related papers (2024-10-20T13:47:39Z) - Autonomous Evaluation of LLMs for Truth Maintenance and Reasoning Tasks [20.072783454089098]
This paper presents AutoEval, a novel benchmark for scaling Large Language Model (LLM) assessment in formal tasks with clear notions of correctness.<n>AutoEval is the first benchmarking paradigm that offers several key advantages necessary for scaling objective evaluation of LLMs without human labeling.
arXiv Detail & Related papers (2024-10-11T00:56:37Z) - Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization [67.8738082040299]
Self-Sampling Preference Optimization (SSPO) is a new alignment method for post-training reinforcement learning.<n>SSPO eliminates the need for paired data and reward models while retaining the training stability of SFT.<n>SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
arXiv Detail & Related papers (2024-10-07T17:56:53Z) - Aligning Model Evaluations with Human Preferences: Mitigating Token Count Bias in Language Model Assessments [2.1370543868467275]
This follow-up paper explores methods to align Large Language Models evaluator preferences with human evaluations.
We employed Bayesian statistics and a t-test to quantify this bias and developed a recalibration procedure to adjust the GPTScorer.
Our findings significantly improve aligning the recalibrated LLM evaluator with human evaluations across multiple use cases.
arXiv Detail & Related papers (2024-07-05T09:26:40Z) - $i$REPO: $i$mplicit Reward Pairwise Difference based Empirical Preference Optimization [12.266207199002604]
Large Language Models (LLM) can sometimes produce outputs that deviate from human expectations.
We propose a novel framework named $i$REPO, which utilizes implicit Reward pairwise difference regression for Empirical Preference Optimization.
We show that $i$REPO effectively achieves self-alignment using soft-label, self-generated responses and the logit of empirical AI annotators.
arXiv Detail & Related papers (2024-05-24T05:42:11Z) - AutoEval Done Right: Using Synthetic Data for Model Evaluation [79.01454261157525]
We suggest efficient and statistically principled algorithms for this purpose.
These algorithms increase the effective human-labeled sample size by up to 50% on experiments with GPT-4.
arXiv Detail & Related papers (2024-03-09T02:47:11Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - Efficient Learning of Accurate Surrogates for Simulations of Complex Systems [0.0]
We introduce an online learning method empowered by sampling-driven sampling.
It ensures that all turning points on the model response surface are included in the training data.
We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates can be reliably auto-generated.
arXiv Detail & Related papers (2022-07-11T20:51:11Z) - SE3M: A Model for Software Effort Estimation Using Pre-trained Embedding
Models [0.8287206589886881]
This paper proposes to evaluate the effectiveness of pre-trained embeddings models.
Generic pre-trained models for both approaches went through a fine-tuning process.
Results were very promising, realizing that pre-trained models can be used to estimate software effort based only on requirements texts.
arXiv Detail & Related papers (2020-06-30T14:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.