An AI Capability Threshold for Rent-Funded Universal Basic Income in an AI-Automated Economy
- URL: http://arxiv.org/abs/2505.18687v2
- Date: Sat, 26 Jul 2025 14:29:30 GMT
- Title: An AI Capability Threshold for Rent-Funded Universal Basic Income in an AI-Automated Economy
- Authors: Aran Nayebi,
- Abstract summary: We derive the first closed-form condition under which AI capital profits could sustainably finance a universal basic income.<n>We analyze how the AI capability threshold--defined as the productivity level of AI relative to pre-AI automation--varies under different economic scenarios.
- Score: 2.6451153531057985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive the first closed-form condition under which artificial intelligence (AI) capital profits could sustainably finance a universal basic income (UBI) without additional taxes or new job creation. In a Solow-Zeira economy characterized by a continuum of automatable tasks, a constant net saving rate $s$, and task-elasticity $\sigma < 1$, we analyze how the AI capability threshold--defined as the productivity level of AI relative to pre-AI automation--varies under different economic scenarios. At present economic parameters, we find that AI systems must achieve only approximately 5-6 times existing automation productivity to finance an 11%-of-GDP UBI, in the worst case situation where *no* new jobs or tasks are created. Our analysis also reveals some specific policy levers: raising public revenue share (e.g. profit taxation) of AI capital from the current 15% to about 33% halves the required AI capability threshold to attain UBI to 3 times existing automotion productivity, but gains diminish beyond 50% public revenue share, especially if regulatory costs increase. Market structure also strongly affects outcomes: monopolistic or concentrated oligopolistic markets reduce the threshold by increasing economic rents, whereas heightened competition significantly raises it. Overall, these results suggest a couple policy recommendations: maximizing public revenue share up to a point so that operating costs are minimized, and strategically managing market competition can ensure AI's growing capabilities translate into meaningful social benefits within realistic technological progress scenarios.
Related papers
- Will Neural Scaling Laws Activate Jevons' Paradox in AI Labor Markets? A Time-Varying Elasticity of Substitution (VES) Analysis [0.0]
We develop a model connecting AI development to labor substitution through four key mechanisms.<n>This work provides a simple framework to help assess the economic reasoning behind industry claims that AI will increasingly substitute for human labor.
arXiv Detail & Related papers (2025-03-04T16:55:30Z) - Societal Adaptation to AI Human-Labor Automation [0.0]
This paper analyzes how society can adapt to AI-driven human-labor automation.<n>The threat model is centered on mass unemployment and its socioeconomic consequences.<n>The analysis explores both "capability-modifying interventions" (CMIs) that shape how AI develops, and "adaptation interventions" (ADIs) that help society adjust.
arXiv Detail & Related papers (2024-12-07T15:08:11Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.<n>First, it is not sustainable, as, despite efficiency improvements, its compute demands increase faster than model performance.<n>Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - In the Shadow of Smith`s Invisible Hand: Risks to Economic Stability and Social Wellbeing in the Age of Intelligence [0.0]
Even a moderate increase in the AI-capital-to-labour ratio could increase labour underutilisation to double its current level.
To prevent a reduction in per capita disposable income due to the estimated increase in underutilization, at least a 10.8-fold increase in the new job creation rate would be necessary.
arXiv Detail & Related papers (2024-04-22T06:16:48Z) - The recessionary pressures of generative AI: A threat to wellbeing [0.0]
Generative Artificial Intelligence (AI) stands as a transformative force that presents a paradox.
It offers unprecedented opportunities for productivity growth while potentially posing significant threats to economic stability and societal wellbeing.
This paper explores the conditions under which both may be true.
arXiv Detail & Related papers (2024-03-26T05:51:05Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - Finding Regularized Competitive Equilibria of Heterogeneous Agent
Macroeconomic Models with Reinforcement Learning [151.03738099494765]
We study a heterogeneous agent macroeconomic model with an infinite number of households and firms competing in a labor market.
We propose a data-driven reinforcement learning framework that finds the regularized competitive equilibrium of the model.
arXiv Detail & Related papers (2023-02-24T17:16:27Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
We show that the AI Economist framework enables effective, flexible, and interpretable policy design using two-level reinforcement learning and data-driven simulations.
We find that log-linear policies trained using RL significantly improve social welfare, based on both public health and economic outcomes, compared to past outcomes.
arXiv Detail & Related papers (2021-08-06T01:30:41Z) - The AI Economist: Optimal Economic Policy Design via Two-level Deep
Reinforcement Learning [126.37520136341094]
We show that machine-learning-based economic simulation is a powerful policy and mechanism design framework.
The AI Economist is a two-level, deep RL framework that trains both agents and a social planner who co-adapt.
In simple one-step economies, the AI Economist recovers the optimal tax policy of economic theory.
arXiv Detail & Related papers (2021-08-05T17:42:35Z) - AI and Shared Prosperity [0.0]
Future advances in AI that automate away human labor may have stark implications for labor markets and inequality.
This paper proposes a framework to analyze the effects of specific types of AI systems on the labor market, based on how much labor demand they will create versus displace.
arXiv Detail & Related papers (2021-05-18T12:37:18Z) - The AI Economist: Improving Equality and Productivity with AI-Driven Tax
Policies [119.07163415116686]
We train social planners that discover tax policies that can effectively trade-off economic equality and productivity.
We present an economic simulation environment that features competitive pressures and market dynamics.
We show that AI-driven tax policies improve the trade-off between equality and productivity by 16% over baseline policies.
arXiv Detail & Related papers (2020-04-28T06:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.