Few-Shot Optimization for Sensor Data Using Large Language Models: A Case Study on Fatigue Detection
- URL: http://arxiv.org/abs/2505.18754v1
- Date: Sat, 24 May 2025 15:43:25 GMT
- Title: Few-Shot Optimization for Sensor Data Using Large Language Models: A Case Study on Fatigue Detection
- Authors: Elsen Ronando, Sozo Inoue,
- Abstract summary: We propose a novel few-shot optimization with HED-LM (Hybrid Euclidean Distance with Large Language Models) to improve example selection for sensor-based classification tasks.<n>HED-LM addresses this challenge through a hybrid selection pipeline that filters candidate examples based on Euclidean distance and re-ranks them.<n>Our experiments show that HED-LM achieves a mean macro F1-score of 69.13$pm$10.71%, outperforming both random selection and distance-only filtering.
- Score: 3.536622936239033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel few-shot optimization with HED-LM (Hybrid Euclidean Distance with Large Language Models) to improve example selection for sensor-based classification tasks. While few-shot prompting enables efficient inference with limited labeled data, its performance largely depends on the quality of selected examples. HED-LM addresses this challenge through a hybrid selection pipeline that filters candidate examples based on Euclidean distance and re-ranks them using contextual relevance scored by large language models (LLMs). To validate its effectiveness, we apply HED-LM to a fatigue detection task using accelerometer data characterized by overlapping patterns and high inter-subject variability. Unlike simpler tasks such as activity recognition, fatigue detection demands more nuanced example selection due to subtle differences in physiological signals. Our experiments show that HED-LM achieves a mean macro F1-score of 69.13$\pm$10.71%, outperforming both random selection (59.30$\pm$10.13%) and distance-only filtering (67.61$\pm$11.39%). These represent relative improvements of 16.6% and 2.3%, respectively. The results confirm that combining numerical similarity with contextual relevance improves the robustness of few-shot prompting. Overall, HED-LM offers a practical solution to improve performance in real-world sensor-based learning tasks and shows potential for broader applications in healthcare monitoring, human activity recognition, and industrial safety scenarios.
Related papers
- Diffusion Sampling Path Tells More: An Efficient Plug-and-Play Strategy for Sample Filtering [18.543769006014383]
Diffusion models often exhibit inconsistent sample quality due to variations inherent in their sampling trajectories.<n>We introduce CFG-Rejection, an efficient, plug-and-play strategy that filters low-quality samples at an early stage of the denoising process.<n>We validate the effectiveness of CFG-Rejection in image generation through extensive experiments.
arXiv Detail & Related papers (2025-05-29T11:08:24Z) - Improving Large Language Model Planning with Action Sequence Similarity [50.52049888490524]
In this work, we explore how to improve the model planning capability through in-context learning (ICL)<n>We propose GRASE-DC: a two-stage pipeline that first re-samples high AS exemplars and then curates the selected exemplars.<n>Our experimental result confirms that GRASE-DC achieves significant performance improvement on various planning tasks.
arXiv Detail & Related papers (2025-05-02T05:16:17Z) - Benchmarking Open-Source Large Language Models on Healthcare Text Classification Tasks [2.7729041396205014]
This study evaluates the classification performance of five open-source large language models (LLMs)<n>We report precision, recall, and F1 scores with 95% confidence intervals for all model-task combinations.
arXiv Detail & Related papers (2025-03-19T12:51:52Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
Performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts.
We introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries.
Experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance.
arXiv Detail & Related papers (2024-06-08T13:40:38Z) - Adapting Large Multimodal Models to Distribution Shifts: The Role of In-Context Learning [41.59855801010565]
Large multimodal models (LMMs) potentially act as general-purpose assistants and are highly robust against different distributions.
Despite this, domain-specific adaptation is still necessary particularly in specialized areas like healthcare.
This work investigates in-context learning (ICL) as an effective alternative for enhancing LMMs' adaptability.
arXiv Detail & Related papers (2024-05-20T17:59:21Z) - Efficient Detection of LLM-generated Texts with a Bayesian Surrogate Model [14.98695074168234]
We propose a new method to detect machine-generated text, especially from large language models (LLMs)
We use a Bayesian surrogate model, which allows us to select typical samples based on Bayesian uncertainty and interpolate scores from typical samples to other samples, to improve query efficiency.
Empirical results demonstrate that our method significantly outperforms existing approaches under a low query budget.
arXiv Detail & Related papers (2023-05-26T04:23:10Z) - EARL: An Elliptical Distribution aided Adaptive Rotation Label
Assignment for Oriented Object Detection in Remote Sensing Images [22.963695067213084]
Adaptive Rotation Label Assignment (EARL) is proposed to select high-quality positive samples adaptively in anchor-free detectors.
In this paper, an adaptive scale sampling (ADS) strategy is presented to select samples adaptively among multi-level feature maps according to the scales of targets.
In addition, a dynamic elliptical distribution aided sampling (DED) strategy is proposed to make the sample distribution more flexible to fit the shapes and orientations of targets.
arXiv Detail & Related papers (2023-01-14T08:32:16Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z) - SelectAugment: Hierarchical Deterministic Sample Selection for Data
Augmentation [72.58308581812149]
We propose an effective approach, dubbed SelectAugment, to select samples to be augmented in a deterministic and online manner.
Specifically, in each batch, we first determine the augmentation ratio, and then decide whether to augment each training sample under this ratio.
In this way, the negative effects of the randomness in selecting samples to augment can be effectively alleviated and the effectiveness of DA is improved.
arXiv Detail & Related papers (2021-12-06T08:38:38Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances.
We propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD.
MPSR generates multi-scale positive samples as object pyramids and refines the prediction at various scales.
arXiv Detail & Related papers (2020-07-18T09:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.