Mal-D2GAN: Double-Detector based GAN for Malware Generation
- URL: http://arxiv.org/abs/2505.18806v1
- Date: Sat, 24 May 2025 17:38:28 GMT
- Title: Mal-D2GAN: Double-Detector based GAN for Malware Generation
- Authors: Nam Hoang Thanh, Trung Pham Duy, Lam Bui Thu,
- Abstract summary: The Mal-D2GAN model was designed with double-detector and a least square loss function and tested on a dataset of 20,000 samples.<n>The results show that the Mal-D2GAN model reduced the detection accuracy (true positive rate) in 8 malware detectors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) has been developed to detect malware in recent years. Most researchers focused their efforts on improving the detection performance but ignored the robustness of the ML models. In addition, many machine learning algorithms are very vulnerable to intentional attacks. To solve these problems, adversarial malware examples are generated by GANs to enhance the robustness of the malware detector. However, since current GAN models suffer from limitations such as unstable training and weak adversarial examples, we propose the Mal-D2GAN model to address these problems. Specifically, the Mal-D2GAN architecture was designed with double-detector and a least square loss function and tested on a dataset of 20,000 samples. The results show that the Mal-D2GAN model reduced the detection accuracy (true positive rate) in 8 malware detectors. The performance was then compared with that of the existing MalGAN and Mal- LSGAN models.
Related papers
- Generative AI-Based Effective Malware Detection for Embedded Computing Systems [4.005387996499278]
We introduce a code-aware data generation technique that generates multiple mutated samples of the limitedly seen malware by the devices.
Loss minimization ensures that the generated samples closely mimic the limitedly seen malware and mitigate the impractical samples.
The proposed technique achieves an accuracy of 90% in detecting limitedly seen malware, which is approximately 3x more than the accuracy attained by state-of-the-art techniques.
arXiv Detail & Related papers (2024-04-02T22:37:34Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - On the Effectiveness of Adversarial Samples against Ensemble
Learning-based Windows PE Malware Detectors [0.0]
We propose a mutation system to counteract ensemble learning-based detectors by combining GANs and an RL model.
In the FeaGAN model, ensemble learning is utilized to enhance the malware detector's evasion ability, with the generated adversarial patterns.
arXiv Detail & Related papers (2023-09-25T02:57:27Z) - FGAM:Fast Adversarial Malware Generation Method Based on Gradient Sign [16.16005518623829]
Adversarial attacks are to deceive the deep learning model by generating adversarial samples.
This paper proposes FGAM (Fast Generate Adversarial Malware), a method for fast generating adversarial malware.
It is experimentally verified that the success rate of the adversarial malware deception model generated by FGAM is increased by about 84% compared with existing methods.
arXiv Detail & Related papers (2023-05-22T06:58:34Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - Mal2GCN: A Robust Malware Detection Approach Using Deep Graph
Convolutional Networks With Non-Negative Weights [1.3190581566723918]
We present a black-box source code-based adversarial malware generation approach that can be used to evaluate the robustness of malware detection models against real-world adversaries.
We then propose Mal2GCN, a robust malware detection model. Mal2GCN uses the representation power of graph convolutional networks combined with the non-negative weights training method to create a malware detection model with high detection accuracy.
arXiv Detail & Related papers (2021-08-27T19:42:13Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA, an Adversarial Malware Detection model uses evolutionary optimization to create attack samples to make the network robust against evasion attacks.
By retraining the model with the evolved malware samples, its performance improves a significant margin.
arXiv Detail & Related papers (2020-02-09T09:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.